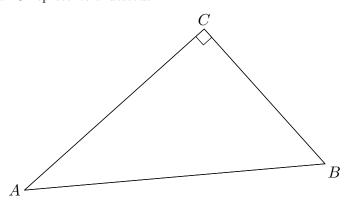

Troisième / Trigonométrie

ChingEval: 2 exercices disponibles pour l'évaluation par QCM

Définition des rapports trigonométriques

 \bigcirc On considère les trois triangles ABC, MNP, RST représentés ci-dessous:

Exprimer à l'aide des longueurs des triangles, les rapports trigonométriques suivants:


- $(a) \cos \widehat{CAB}$
- $\widehat{\mathbf{b}} \sin \widehat{PNM}$
- $\cot T \hat{T} \hat{S} \hat{R}$

- \bigcirc Dessiner un triangle ABC rectangle en C.
 - (b) En fonction des longueurs des côtés du triangle ABC, exprimer le rapport trigonométrique du sinus de l'angle \overline{ABC} .
- \bigcirc a Dessiner un triangle DEF rectangle en E.
 - (b) En fonction des longueurs des côtés du triangle DEF, exprimer le rapport trigonométrique de la tangente de l'angle \widehat{EDF} .

 \bigcirc On considère le triangle ABC rectangle $\overline{\text{en }C}$ représenté ci-dessous :

1 À l'aide de mesures effectuées sur la figure ci-dessus, compléter le tableau à l'aide des mesures des côtés du triangle ABC:

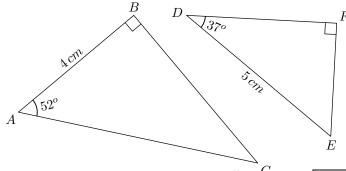
Angle considéré	Côté adjacent	Côté opposé	Hypoténuse		
\widehat{CAB}					
\widehat{CBA}					

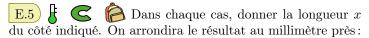
(2) (a) En mesurant les longueurs sur le triangle ABCreprésenté ci-dessus, compléter chaque case du tableau ci-dessous par le quotient définissant la valeur recherchée, puis par sa valeur approchée au centième près:

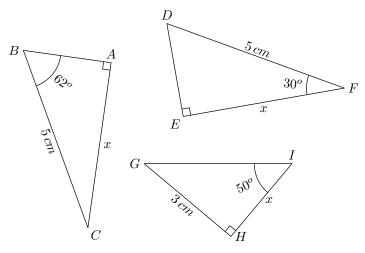
α	$\cos \alpha$	$\sin \alpha$	$\tan \alpha$
\widehat{CAB}	≈	≈	≈
\widehat{CBA}	≈	≈	≈

- (b) À l'aide d'une table trigonométrique, déterminer une valeur approchée de la mesure des angles $\widehat{C}A\widehat{B}$ et $\widehat{A}B\widehat{C}$ au degré près.
- (3) À l'aide d'un rapporteur, vérifier l'exactitude des résultats observés à la question (2)(b).

Rapports trigonométriques

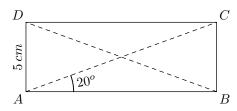




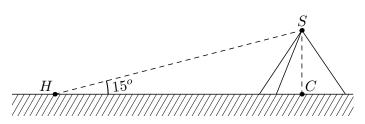

On considère les deux triangles ci-

https://chingmath.fr (cc) BY-NC

Déterminer les mesures des segments [AC] et [DF] arrondies au millimètre près.


Rapports trigonométriques, problèmes et modélisations

brace On considère le rectangle ABCD ci-



Sans utiliser le théorème de Pythagore, déterminer le périmètre du rectangle ABCD arrondi au millimètre près.

de Khéops.

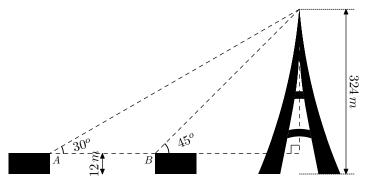
On explorateur arrive devant la pyramide

Il pose ses instruments de mesure (le théodolite) au point H. En étudiant la pyramide, il observe que c'est une pyramide régulière: le pied C de la hauteur issue du sommet S est également le centre de la base. Il estime également la distance HC à $511\,m$.

Du point H au sommet S, ses instruments de mesure révèlent

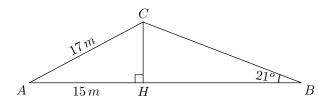
un angle de 15° .

Déterminer la mesure, arrondie au mètre près, de la hauteur SC de la pyramide de Khéops.



La construction de la tour Eiffel s'est achevée en 1899. Avec un mat portant le drapeau français sa hauteur était de

En 2005, la pose d'une antenne pour la télévision porta la taille de la tour Eiffel à $324 \, m$.


La figure ci-dessous schématise la tour Eiffel et 2 maisons:

- (1) Reproduire, sous la forme d'un schéma simplifié, la figure ci-dessous sur votre feuille.
- (2) Calculer la distance AB qui sépare les deux maisons.

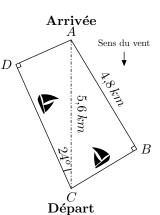
Rapports trigonométriques, théorème de Pythagore

 \bigcirc On considère le triangle ABC représenté $\overline{\text{ci-dessous}}$ où le point H est le pied de la hauteur issue du sommet C:

dont on connait les dimensions:

 $AC = 17 \, m$; $AH = 15 \, m$; $\widehat{C}B\widehat{H} = 21^{\circ}$

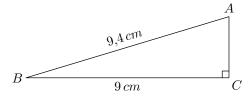
- (1) Déterminer la longueur [HC].
- 2 Déterminer, au décimètre près, la longueur du segment [BH].
- (3) Donner l'aire du triangle ABC au mètre carré près.



Lorsqu'un voilier est face au vent, il ne peut pas avancer.

Si la destination choisie nécessite de prendre une direction face au vent, le voilier devra progresser en faisant des zigzags.

Comparer les trajectoires de ces deux voiliers en calculant la distance, en kilomètres et arrondie au dixième que chacun a parcourue.



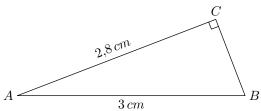
Introduction aux rapports trigonométriques réciproques

On considère la table trigonométrique du cosinus au degré près ci-dessous:

α	$\alpha \cos \alpha$ $\alpha \cos \alpha$		$\alpha \cos \alpha$		$\alpha \cos \alpha$			$\cos \alpha$	$\alpha \cos \alpha$		
0	1	15	0,9659	30	0,8660	45	0,7071	60	0,5000	75	0,2588
0,5	0,9999	15,5	0.9636	30,5	0,8616	45,5	0,7009	60,5	0,4924	75,5	0.2504
1	0,9998	16	0,9613	31	0,8572	46	0,6947	61	0,4848	76	0,2419
1,5	0,9997	16,5	0,9588	31,5	0,8526	46,5	0,6884	61,5	0,4772	76,5	0.2334
2	0,9994	17	0,9563	32	0,8480	47	0,6820	62	0,4695	77	0,2250
2,5	0,9990	17,5	0,9537	32,5	0,8434	47,5	0,6756	62,5	0,4617	77,5	0,2164
3	0,9986	18	0,9511	33	0,8387	48	0,6691	63	0,4540	78	0,2079
3,5	0,9981	18,5	0,9483	33,5	0,8339	48,5	0,6626	63,5	0,4462	78,5	0,1994
4	0.9976	19	0,9455	34	0,8290	49	0,6561	64	0,4384	79	0,1908
4,5	0,9969	19,5	0,9426	34,5	0,8241	49,5	0,6494	64,5	0,4305	79,5	0,1822
5	0,9962	20	0,9397	35	0,8192	50	0,6428	65	0,4226	80	0,1736
5,5	0,9954	20,5	0,9367	35,5	0,8141	50,5	0,6361	65,5	0,4147	80,5	0,1650
6	0,9945	21	0,9336	36	0,8090	51	0,6293	66	0,4067	81	0,1564
6,5	0,9936	21,5	0,9304	36,5	0,8039	51,5	0,6225	66,5	0,3987	81,5	0,1478
7	0,9925	22	0,9272	37	0,7986	52	0,6157	67	0,3907	82	0,1392
7,5	0,9914	22,5	0,9239	37,5	0,7934	52,5	0,6088	67,5	0,3827	82,5	0,1305
8	0,9903	23	0,9205	38	0,7880	53	0,6018	68	0,3746	83	0,1219
8,5	0,9890	23,5	0,9171	38,5	0,7826	53,5	0,5948	68,5	0,3665	83,5	0,1132
9	0,9877	24	0,9135	39	0,7771	54	0,5878	69	0,3584	84	0,1045
9,5	0,9863	24,5	0,9100	39,5	0,7716	54,5	0,5807	69,5	0,3502	84,5	0,0958
10	0,9848	25	0,9063	40	0,7660	55	0,5736	70	0,3420	85	0,0872
10,5	0,9833	25,5	0,9026	40,5	0,7604	55,5	0,5664	70,5	0,3338	85,5	0,0785
11	0,9816	26	0,8988	41	0,7547	56	0,5592	71	0,3256	86	0,0698
11,5	0,9799	26,5	0,8949	41,5	0,7490	56,5	0,5519	71,5	0,3173	86,5	0,0610
12	0,9781	27	0,8910	42	0,7431	57	0,5446	72	0,3090	87	0,0523
12,5	0,9763	27,5	0,8870	42,5	0,7373	57,5	0,5373	72,5	0,3007	87,5	0,0436
13	0,9744	28	0,8829	43	0,7314	58	0,5299	73	0,2924	88	0,0349
13,5	0,9724	28,5	0,8788	43,5	0,7254	58,5	0,5225	73,5	0,2840	88,5	0,0262
14	0,9703	29	0,8746	44	0,7193	59	0,5150	74	0,2756	89	0,0175
14,5	0,9681	29,5	0,8704	44,5	0,7133	59,5	0,5075	74,5	0,2672	89,5	0,0087

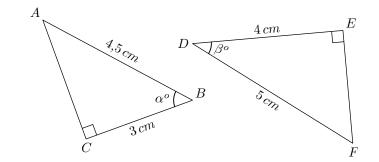
On considère le triangle ABC ci-dessous rectangle en C:

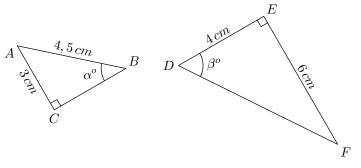
- $\frac{BC}{BA} \approx 0.9574$ 1 Établir que:
- 2 À l'aide de la table du cosinus, déterminer la mesure, au degré près, de l'angle $\widehat{A}B\widehat{C}$.



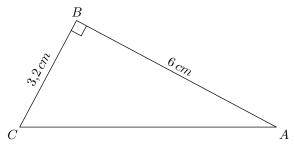
On donne la table trigonométrique du

α	$\sin \alpha$	α	$\sin \alpha$	α	$\sin \alpha$	α	$\sin \alpha$	α	$\sin \alpha$	α	$\sin \alpha$
0,5	0	15,5	0,2672	30,5	0,5075	45,5	0,7133	60,5	0,8704	75,5	0,9681
1,5	0,0262	16,5	0,2840	31,5	0,5225	46,5	0,7254	61,5	0,8788	76,5	0,9724
2,5	0,0436	17,5	0,3007	32,5	0,5373	47,5	0,7373	62,5	0,8870	77,5	0,9763
3,5	0,0610	18,5	0,3173	33,5	0,5519	48,5	0,7490	63,5	0,8949	78,5	0,9799
4,5	0,0785	19,5	0,3338	34,5	0,5664	49,5	0,7604	64,5	0,9026	79,5	0,9833
5,5	0,0958	$ ^{20,5}$	0,3502	35,5	0,5807	50,5	0,7716	65,5	0,9100	80,5	0,9863
6,5	0,1132	21,5	0,3665	36,5	0,5948	51,5	0,7826	66,5	0,9171	81,5	0,9890
7,5	0,1305	$ ^{22,5}$	0,3827	37,5	0,6088	52,5	0,7934	67,5	0,9239	82,5	0,9914
8,5	0,1478	23,5	0,3987	38,5	0,6225	53,5	0,8039	68,5	0,9304	83,5	0,9936
9,5	0,1650	24,5	0,4147	39,5	0,6361	54,5	0,8141	69,5	0,9367	84,5	0,9954
10,5	0,1822	25,5	0,4305	40,5	0,6494	55,5	0,8241	70,5	0,9426	85,5	0,9969
11,5	0,1994	26,5	0,4462	41,5	0,6626	56,5	0,8339	71,5	0,9483	86,5	0,9981
12,5	0,2164	27,5	0,4617	42,5	0,6756	57,5	0,8434	72,5	0,9537	87,5	0,9990
13,5	0,2334	28,5	0,4772	43,5	0,6884	58,5	0,8526	73,5	0,9588	88,5	0,9997
14,5	0,2504	29,5	0,4924	44,5	0,7009	59,5	0,8616	74,5	0,9636	89,5	0,9999


On considère le triangle ABC rectangle en C représenté cidessous:


Déterminer la mesure de l'angle ABC.

Rapports trigonométriques réciproques

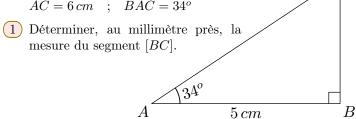

Calculer l'arrondi au dixième de degrés près des angles $\widehat{A}\widehat{B}\widehat{C}$ et $\widehat{E}\widehat{D}\widehat{F}$ indiqués ci-dessous :

Calculer l'arrondi au dixième de degrés près des angles $\widehat{A}\widehat{B}\widehat{C}$ et $\widehat{E}\widehat{D}\widehat{F}$ indiqués ci-dessous :

 \bigcirc On considère le triangle ABC rectangle en B représenté ci-dessous:

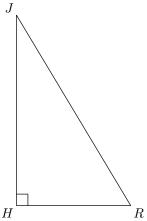
Déterminer les mesures des angles BCA et CAB arrondies au dixième de degré près.

Rapport trigonométrique direct et réciproque



Le triangle ABC est un triangle rectangle en B vérifiant:

 $AC = 6 \, cm$; $\widehat{B}A\widehat{C} = 34^{\circ}$


2 Donner, au centimètre carré près, l'aire du triangle ABC.

L'unité de longueur est le mètre. Le dessin n'est pas à l'échelle.

1 Roméo (R) veut rejoindre Juliette (J) à sa fenêtre. Pour cela, il place une échelle [JR]contre le mur [JH]. Le mur et le sol sont perpendiculaires. On donne:

HR=3JH=4.

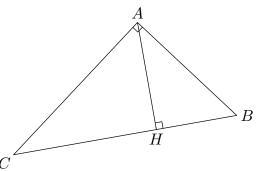
- (a) Calculer JR.
- (b) Calculer $\cos HJR$ puis la valeur de l'angle \widehat{HJR} arrondie au degré.

(2) L'échelle glisse: elle change de position (on note alors J le point d'appui de l'échelle contre le mur).

On donne: JR=5 et $HJR=40^{\circ}$.

- (a) Calculer HR (donner la valeur arrondie au dixième)
- (b) Écrire l'expression de $\tan HJR$ puis calculer JH (donner la valeur arrondie au dixième).

E.18 La figure n'est pas faite en vraie grandeur. Elle n'est pas à reproduire

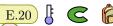

AHC est un triangle rectangle en H.

La droite passant par A est perpendiculaire à la droite (AC)coupe la droite (HC) en B.

On sait que:

C

 $AH = 4.8 \, cm$; $HC = 6.4 \, cm$

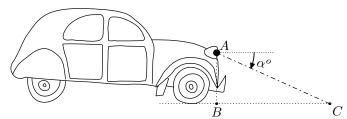

- 1 (a) Justifier l'égalité: $\widehat{ACH} = 90^{\circ} \widehat{HAC}$
 - (b) Justifier l'égalité: $\widehat{B}\widehat{A}\widehat{H} = 90^{\circ} \widehat{H}\widehat{A}\widehat{C}$
 - © Que peut-on déduire pour les angles \widehat{ACH} et \widehat{BAH} ?
- 2 a Montrer que: $\tan(\widehat{ACH}) = \frac{3}{4}$
 - (b) En utilisant le triangle BAH, exprimer tan(BAH) en fonction de BH.
- 3 Déduire des questions 1 et 2 que: BH = 3.6 cm
- (4) Calculer la mesure en degré, arrondie au degré, de l'angle \widehat{ACH} .

E.19 | C |

La figure ci-contre est composée des triangles ABC et BDC rectangle respectivement en B et D.

Donner la valeur de l'angle α au dixième près.

Trigonométrie et théorème de Pythagore



1) Tracer le triangle REC tel que:

 $RE = 7.5 \, cm$; $RC = 10 \, cm$; $EC = 12.5 \, cm$

- 2 Montrer que le triangle REC est rectangle en R.
- 3 Donner les valeurs arrondies au degré près des angles de ce triangle.

On considère la voiture représentée cidessous:

On suppose que la lumière émise par son phare peut être considérée comme émise d'un unique point A et qu'avec le réglage actuel le phare éclaire à l'horizontal.

On souhaite baisser le phare d'un angle α pour que la lumière émise atteigne, mais ne dépasse pas le point C.

Voici quelques mesures obtenues:

- Le phare se situe à une hauteur de 1,1 m du sol.
- ullet Le point C devant la voiture à une distance de $6\,m$
- 1 En utilisant les points A, B et C, indiquer les longueurs ayant pour valeurs 1,1 m et 6 m.
- (2) Déterminer la mesure de l'angle α d'inclinaison du phare afin que celui-ci atteigne le point C, arrondie au dixième de degré près.

Trigonométrie, théorème de Pythagore et/ou Thalès

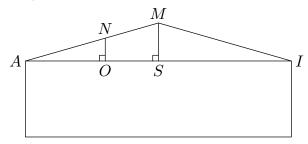
Les questions sont indépendantes

les unes des autres

MNP est un triangle rectangle en P tel que:

 $MP = 5 \, cm$: $MN = 7 \, cm$

- 1 Calculer la mesure, arrondie au degré, de l'angle MNP.
- (2) Calculer la valeur exacte de NP; Donner sa valeur arrondie au mm.
- (3) Soit I le point du segment [MP] tel que PI = 2 cm. La parallèle à (MN) passant par I coupe [PN] en J. Calculer IJ.



L'unité de longueur est le mètre

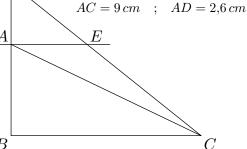
Le dessin ci-contre représente la coupe d'une maison. Le triangle MAI est isocèle, de sommet principal M. La droite perpendiculaire à la droite (AI), passant par M, coupe (AI) en S.

On sait que: MS=2,5 et AI=11.

- 1 (a) Calculer AS. (justifier)
 - (b) Calculer la valeur arrondie à 0,1 degré près de la mesure de l'angle AMS.

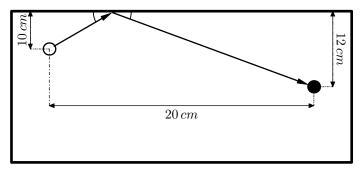
- (2) Dans le toit, il y a une fuite en N qui fait une tache en O, sur le plafond.
 - La droite (NO) est perpendiculaire à la droite (AI).
 - AO = 4.5

Pour effectuer les calculs, on prendra: $\widehat{OAN} = 24^{\circ}$. Calculer AN. On donnera la valeur arrondie à 0,1 près.


E.24

DSur cette figure, on a les longueurs suivantes: $AB=5,4\,cm\quad;\quad BC=7,2\,cm$

Les droites (AE) et (BC) sont parallèles.


la figure n'est pas à refaire. Elle n'est pas donnée en vraie

- (1) Montrer que le triangle ABC est un triangle rectangle en B.
- 2 Calculer la tangente de l'angle \widehat{ACB} , puis en déduire la mesure de l'angle \widehat{ACB} (valeur arrondie au degré près).
- Calculer AE.

10. Problèmes ouverts, problème à prise d'initiative, taches complexes

E.25 § Dans cet exercice, toute trace de recherche, même incomplète, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.

Au billard, un joueur veut toucher la boule noire avec la boule blanche en faisant une bande *(en touchant un seul bord du billard)*. Le schéma indique la situation dans laquelle se retrouve le joueur:

Le billard étant tout neuf, la boule blanche repart de la bande avec le même angle avec lequel elle est arrivée. Quel doit être son angle d'arrivée pour toucher la boule noire?