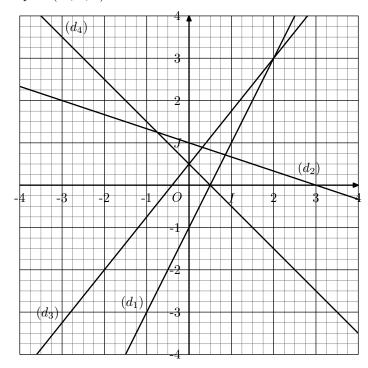

## Hors programme collège / Fonctions affines et linéaires

## 1. Recherche de l'équation de droites




- 1 Donner les coordonnées des points A, B, C, D.
- 2 On considère la fonction f dont la représentation graphique est la droite (AB):
  - (a) Montrer que le coefficient directeur de la droite (AB) vaut  $\frac{2}{5}$ .
  - b La fonction f admet pour expression:  $f(x) = 0.4 \cdot x + b$  où b est un nombre En utilisant les coordonnées du point B, déterminer la valeur de b.
- $\bigcirc$  On considère la fonction g dont la représentation

graphique est la droite (CD):

- (a) Déterminer le coefficient directeur de la droite (CD).
- $\bigcirc$  Déterminer l'expression complète de la fonction g.

E.2 Déterminer les coefficients directeurs de chacune des trois droites représentées ci-dessous dans le repère (O; I; J):



## 2. Problèmes du brevet









Un club multisport propose à ses utilisateurs de choisir entre les trois formules:

- Formule A: 1500 F par séance.
- Formule B: forfait de  $28\,000\,F$  par an auquel s'ajoute une participation de  $800\,F$  par séance.
- $\bullet$  Formule  $C\colon$  for fait de  $98\,000\,F$  par an quel que soit le nombre de séances.
- 1 Tania décide de suivre une séance par mois pendant toute l'année.

Willy suivra une séance par semaine pendant toute l'année.

Raitua suivra deux séances par semaine pendant toute l'année

a Recopier et compléter le tableau suivant. On ne demande aucun détail de calcul. On rappelle qu'une année comporte 52 semaines.

|                                   | Tania | Willy | Raitua |
|-----------------------------------|-------|-------|--------|
| Nombre de séances<br>pour l'année |       |       |        |
| Prix à payer avec la formule $A$  |       |       |        |
| Prix à payer avec la formule $B$  |       |       |        |
| Prix à payer avec la formule $C$  |       |       |        |

- b Quelle est la formule la plus avantageuse pour chacun?
- 2 On appelle x le nombre de séances suivies par une personne.
  - Soit  $P_A$  le prix à payer avec la formule A.
  - Soit  $P_B$  le prix à payer avec la formule B.

Exprimer  $P_A$  et  $P_B$  en fonction de x.

3 Résoudre l'inéquation :  $1500x \le 28000+800x$ 

## Partie B

Les tracés de cette partie seront réalisés sur une feuille de papier millimétré.

Soit  $f:x \mapsto ax+b$  une fonction affine de droite représentative  $\mathscr{D}$ .

Tous les points (x; y) de  $\mathscr{D}$  vérifie la relation y = ax + b. On dira que:

L'égalité y = ax + b est l'équation de la droite  $\mathcal{D}$ .

Tracer un repère avec l'origine O étant placé en bas à gauche et :

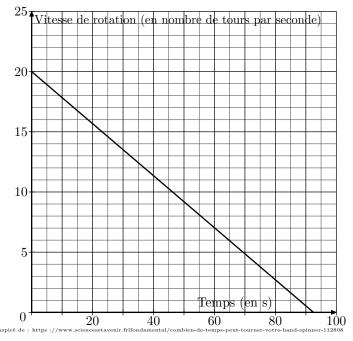
- où 1 cm pour 10 séances sur l'axe des abscisses;
- ullet où  $1\,cm$  pour  $10\,000\,F$  sur l'axe des ordonnés.
- l'axe des abscisses et l'axe des ordonnées sont perpendiculaires.
- 1 Tracer dans ce repère les droites:
  - $\mathcal{D}_A$  d'équation: y=1500x;
  - $\mathcal{D}_B$  d'équation: y = 800x + 28000;
  - $\mathcal{D}_C$  d'équation:  $y = 98\,000$ .

Pour les questions suivantes, on fera apparaître les traits de construction permettant d'y répondre. Aucun calcul n'est demandé.

- 2 Wanda a choisi la formule A et elle a payé  $90\,000\,F$ . Combien a-t-elle suivi de séances?
- $\bigcirc$  Déterminer par le calcul le nombre de séances à partir duquel il est plus avantageux de choisir la formule C.








Le "hand-spinner" est une sorte de toupie plate qui tourne sur elle-même. On a donné au "hand-spinner" une vitesse de rotation initiale au temps  $t\!=\!0$ , puis, au cours du temps, sa vitesse de rotation diminue jusqu'à l'arrêt complet du "hand-spinner".

Sa vitesse de rotation est alors égale à 0.

Grâce à un appareil de mesure, on a relevé la vitesse de rotation exprimée en nombre de tours par seconde.

Sur le graphique ci-dessous, on a représenté cette vitesse en fonction du temps exprimé en seconde:



- 1 Le temps et la vitesse de rotation du "hand-spinner" sont-ils proportionnels? Justifier.
- 2 Par lecture graphique, répondre aux questions suivantes:
  - a Quelle est la vitesse de rotation initiale du "handspinner" (en nombre de tours par seconde)?
  - (b) Quelle est la vitesse de rotation du "hand-spinner" (en nombre de tours par seconde) au bout d'une minute et vingt secondes?
  - C Au bout de combien de temps, le "hand-spinner" vat-il s'arrêter?
- 3 Pour calculer la vitesse de rotation du "hand-spinner" en fonction du temps t, notée V(t), on utilise la fonction suivante:

$$V(t) = -0.214 \times t + V_{\text{initiale}}$$

- t est le temps (exprimé en s) qui s'est écoulé depuis le début de rotation du "hand-spinner";
- $V_{\text{initiale}}$  est la vitesse de rotation à laquelle on a lancé le "hand-spinner" au départ.
- a On lance le "hand-spinner" à une vitesse initiale de 20 tours par seconde. Sa vitesse de rotation est donc donnée par la formule:

$$V(t) = -0.214 \times t + 20$$

Calculer sa vitesse de rotation au bout de  $30 \, s$ .

(b) Au bout de combien de temps le "hand-spinner" va-t-il

s'arrêter? Justifier par un calcul.

c Est-il vrai que, d'une manière générale, si l'on fait tourner le "hand-spinner" deux fois plus vite au départ, il tournera deux fois plus longtemps? Justifier.

E.5 Une agence de location de cassette vidéo propose à ses clients le choix entre deux tarifs.

- $\bullet$  Tarif 1: un abonnement mensuel de 15 € et 0,70 € par cassette louée.
- Tarif 2: un abonnement mensuel de 11 € et 1,50 € par cassette louée.
- 1 Compléter le tableau suivant:

| Nombre de cassettes louées | 0 | 1 | 2 | 6 | 10 |
|----------------------------|---|---|---|---|----|
| Prix payé avec le tarif 1  |   |   |   |   |    |
| Prix payé avec le tarif 2  |   |   |   |   |    |

2 On appelle x le nombre de cassettes louées par un client en un mois.

Exprimer, en fonction de x:

- (a) le prix payé avec le tarif 1, noté  $P_1(x)$ ;
- (b) le prix payé avec le tarif 2, noté  $P_2(x)$ .
- 3 Représenter graphiquement les fonctions affines.
  - (a)  $P_1: x \mapsto P_1(x) = 0.7x + 15.$
  - (b)  $P_2: x \mapsto P_2(x) = 1.5x + 11$

On prendra sur l'axe des abscisses 1 cm pour une cassette et sur l'axe des ordonnées 1 cm pour  $2 \in$ .

- 4 a Résoudre l'équation : 0.7x+15=1.5x+11. Interpréter le résultat.
  - b Vérifier graphiquement cette solution en faisant apparaître les pointillés utiles.
- 5 En utilisant le graphique, combien faut-il louer de cassettes en un mois pour que le tarif 1 soit plus intéressant que le tarif 2?
- 6 Monsieur Avent a choisi le tarif 2 et il a payé 29€ pour le mois.

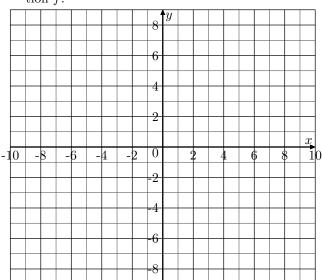
Utiliser le graphique pour déterminer le nombre de cassettes qu'il a louées dans le mois.

Faire apparaître les pointillés utiles.

- 7 Monsieur Comic a choisi le tarif 1 et il a payé 19,90 € pour le mois.
  - a Trouver par un calcul le nombre de cassettes qu'il a louées dans le mois.
  - (b) Dans ce cas, quel est le prix moyen de la location d'une cassette?

Donner le résultat au centime d'euro.

- 8 L'agence décide de proposer un troisième tarif à ses clients: un prix mensuel de 23 € quel que soit le nombre de cassettes louées dans le mois.
  - (a) Représenter sur le même graphique, le prix  $P_3$  payé avec le tarif 3.
  - (b) Combien faut-il louer de cassettes pour que ce nouveau tarif soit plus avantageux que les autres?








Voici un programme de calcul:

- Choisir un nombre;
- Ajouter 1 à ce nombre;
- Calculer le carré du résultat;
- Soustraire le carré du nombre de départ au résultat précédent;
- Ecrire le résultat.
- 1 On choisit 4 comme nombre de départ. Prouver par le calcul que le résultat obtenu avec le programme est 9.
- $\bigcirc$  On note x le nombre choisi.
  - (a) Exprimer le résultat du programme en fonction x.
  - $\bigcirc$  Prouver que ce résultat est égal 2x+1.
- 3 Soit f la fonction définie par: f(x) = 2x + 1
  - (a) Calculer l'image de 0 par f.
  - (b) Déterminer par le calcul l'antécédent de 5 par f.
  - f Ci-dessous, tracer la droite représentative de la fonction f.



d Par lecture graphique, déterminer le résultat obtenu en choisissant -3 comme nombre de départ dans le programme de calcul. (laisser les traits de construction apparents).

E.7 Un client désire acheter un portable à une société en télécommunication, qui lui propose deux tarifs d'abonnement.

- Tarif 1: 0,30 € la minute et portable gratuit.
- Tarif 2: 0,18 € la minute et 108 € d'achat de portable.
- 1 Compléter les tableaux suivants:

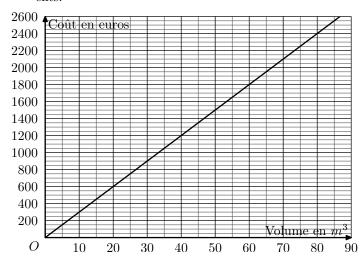
**⇒** Tarif 1:

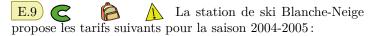
| - Iuiii I ·              |   |     |     |     |
|--------------------------|---|-----|-----|-----|
| Durée en min: $x$        | 0 | 300 | 600 |     |
| Prix à payé en $\in y_1$ |   |     | 180 | 360 |

⇒ Tarif 2:

| Durée en min:      | x     | 0 | 300 | 900 | 1200 |
|--------------------|-------|---|-----|-----|------|
| Prix à payé en € g | $y_2$ |   |     |     |      |

- (2) Exprimer le prix à payer  $y_1$  en fonction de la durée de communication x pour le tarif 1. Exprimer le prix à payer  $y_2$  en fonction de la durée de
- communication x pour le tarif 2.


  3 Représenter dans un même repère les prix à payer  $y_1$  et  $y_2$  en fonction de la durée de communication; on utilisera
  - l'échelle suivante:
     1 cm pour  $50 \in$ ;
  - 1 cm pour 100 min de communication.
- 4 Déterminer graphiquement (laisser les traits de construction apparents):
  - (a) suivant le **tarif 1**, le prix à payer pour 500 minutes de communication.
  - b suivant le **tarif 2**, la durée de communication correspondant à un montant de 180€.
  - c les coordonnées du point pour lequel le montant à payer est identique pour les deux tarifs.
  - d Pour une durée supérieure à 900 minutes, quel est le tarif le plus avantageux?


E.8 M. Dubois réfléchit à son déménagement. Il a fait réaliser deux devis:

- 1 L'entreprise A lui a communiqué le graphique présenté en annexe. Celui-ci représente le coût du déménagement en fonction du volume à transporter.
  - (a) Quel serait le coût pour un volume de  $20 m^3$ ? Laisser apparent les tracés de construction.
  - b Le coût est-il proportionnel au volume transporté? Justifier. Soit g la fonction qui à x, volume à déménager en  $m^3$ , associe le coût du déménagement avec cette entreprise. Exprimer g(x) en fonction de x.
- 2 L'entreprise B lui a communiqué une formule : f(x) = 10x + 800 où x est le volume  $(en\ m^3)$  à transporter et f(x) le prix
  - (a) Calculer f(80). Que signifie le résultat obtenu?

à payer en (en e).

- (b) Déterminer par le calcul l'antécédent de 3500 par la fonction f.
- f c Représenter graphiquement la fonction f sur le graphique présenté ci-dessous.
- 3 M Dubois estime à  $60\,m^3$  le volume de son déménagement. Quelle société a-t-il intérêt à choisir? On justifiera graphiquement les réponses en laissant les tracés apparents.





- $\bullet$  tarif A: chaque journée de ski coûte 20 euros;
- tarif B: en adhérant au club de sports dont la cotisation annuelle s'élève à 60 euros, on bénéficie d'une réduction de 30% sur le prix de chaque journée à 20 euros.
- 1 Yann est adhérent au club des sports de la station. Sachant qu'il a déjà payé sa cotisation annuelle, expliquer pourquoi il devra payer 14 euros par journée de ski.
- 2 Reproduire et compléter le tableau suivant :

| Nombre de jours de ski<br>pour la saison 2004-2005 | 5   | 8 |     |
|----------------------------------------------------|-----|---|-----|
| Coût avec le tarif A (en euros)                    | 100 |   | 220 |
| Coût avec le tarif B (en euros)                    | 130 |   |     |

 $\begin{tabular}{c} \begin{tabular}{c} \begin{tabu$ 

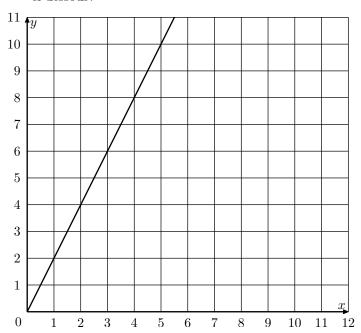
Exprimer en fonction de x:

- (a) le coût annuel  $C_A$  en euros pour un utilisateur ayant choisi le tarif A;
- $\bigcirc$  le coût annuel  $C_B$  en euros pour un utilisateur ayant choisi le tarif B.
- 4 Sachant que Yann adhérent au club a dépensé au total 242 euros, combien de jours a-t-il skié?
- 5 Sur un papier millimétré, tracer un repère tel que:
  - en abscisses: 1 cm pour 1 jour de ski;
  - ullet en ordonnées:  $1\,cm$  pour 10 euros.
  - l'axe des abscisses et l'axe des ordonnées sont perpendiculaires.

On placera l'origine du repère en bas à gauche de la feuille, l'axe des abscisses étant tracé sur le petit côté de la feuille.

Tracer dans ce repère les représentations graphiques des fonctions affines f et g définies par:

$$f(x) = 20x$$
 ;  $g(x) = 14x + 60$ 


- 6 Dans cette partie, on répondra aux différentes questions en utilisant le graphique (faire apparaître sur le graphique les traits nécessaires).
  - a Léa doit venir skier douze journées pendant la saison 2004-2005. Quel est pour elle le tarif le plus intéressant? Quel est le prix correspondant?
  - $footnote{b}$  En étudiant les tarifs de la saison. Chloé constate que, pour son séjour, les tarifs A et B sont égaux. Combien de journées de ski prévoit-elle de faire? Quel est le prix correspondant?

E.10 À l'aide du tableur, on a réalisé les tableaux de valeurs de deux fonctions dont les expressions sont :

$$f(x) = 2x$$
 ;  $g(x) = -2x + 8$ 

| B | $B2  \boxed{\bullet}  f_x \sum = \boxed{=2 \times B1}$ |   |     |   |   |   |  |
|---|--------------------------------------------------------|---|-----|---|---|---|--|
|   | A                                                      | В | C   | D | E | F |  |
| 1 | Valeur de $x$                                          | 0 | 1   | 2 | 3 | 4 |  |
| 2 | Image de $x$                                           | 0 | 2   | 4 | 6 | 8 |  |
| 3 |                                                        |   |     |   |   |   |  |
| 4 | Valeur de $x$                                          | 0 | 0,5 | 1 | 2 | 4 |  |
| 5 | Image de $x$                                           | 8 | 7   | 6 | 4 | 0 |  |

- 1 Quelle est la fonction  $(f \ ou \ g)$  qui correspond à la formule saisie dans la cellule B2?
- 2 Quelle formule a été saisie en cellule B5?
- 3 Laquelle des fonctions f ou g est représenté dans le repère ci-dessous?



- 4 Tracer la représentation graphique de la deuxième fonction dans le repère ci-dessous.
- 5 Donner, en justifiant, la solution de l'équation : 2x = -2x + 8

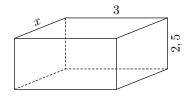
E.11 Un vidéoclub propose différents tarifs pour l'emprunt de DVD:

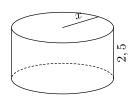
- Tarif A: 4 € par DVD emprunté.
- ullet Tarif B : 2,50 € par DVD emprunté, après avoir payé un abonnement de 18 €.
- $\bullet\,$  Tarif C : abonnement de 70  $\in\,$  pour un nombre illimité de DVD.
- 1 Compléter le tableau suivant indiquant le prix à payer pour 5, ou 15 ou 25 DVD, aux tarifs A, B ou C.

|                 | 5 DVD | 15 DVD | 25 DVD |
|-----------------|-------|--------|--------|
| Coût au tarif A |       |        |        |
| Coût au tarif B |       |        |        |
| Coût au tarif C |       |        |        |

On note x le nombre de DVD empruntés.

2 On admet que les trois tarifs peuvent être exprimés à l'aide des fonctions suivantes:


$$f: x \longmapsto 2.5x + 18$$
 ;  $g: x \longmapsto 70$  ;  $h: x \longmapsto 4x$ 

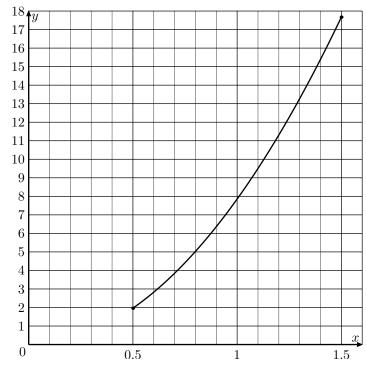

- (a) Associer à chaque tarif la fonction qui lui correspond.
- b Tracer dans un même repère les représentations graphiques de ces trois fonctions. On prendra en abscisse 1 cm pour 2 DVD et en ordonnée 1 cm pour 5€.
- (3) (a) Résoudre l'équation: 4x = 2.5x + 18
  - (b) Interpréter le résultat.
- 4 (a) Résoudre graphiquement l'inéquation suivante :  $70 \le 2.5x + 18$ 
  - (b) Retrouver ensuite le résultat par le calcul.
- 5 Synthèse: donner le tarif le plus intéressant selon le nombre de DVD empruntés.

Un fabricant lui propose alors les deux modèles de réservoirs schématisés ci-dessous.

Les dimensions sont en mètres.

Le premier modèle a la forme d'un pavé droit, le deuxième est de forme cylindrique : dans chaque cas, x peut varier entre  $0.5\,m$  et  $1.5\,m$ .






1 Compléter le tableau ci-dessous.

| _                                    |                              |     |     |
|--------------------------------------|------------------------------|-----|-----|
| Longueur x                           | (en m)                       | 0,5 | 1,5 |
| Volume du re $R_1$ (en r             | éservoir<br>n <sup>3</sup> ) |     |     |
| Volume du réservoir $R_2$ $(en m^3)$ | Valeur exacte                |     |     |
| $(en m^3)$                           | Valeur arrondie à $0.1 m^3$  |     |     |

Les détails des calculs des valeurs exactes devront figurer sur votre copie.

- 2 a Montrer que l'expression, en fonction de x, du volume du réservoir  $R_1$  est:
  - b Montrer que l'expression, en fonction de x, du volume du réservoir  $R_2$  est:  $2.5\pi x^2$
- 3 On considère la fonction  $f_1: x \longmapsto 7,5x$ . Préciser la nature de cette fonction.
- 4 Pour les valeurs de x comprises entre 0,5 et 1,5, la fonction  $f_2: x \longmapsto 2.5\pi x^2$  est déjà représentée sur le graphique ci-dessous:



Sur ce même graphique, représenter la fonction  $f_1$ .

 $\overline{\phantom{a}}$  Répondre aux questions suivantes, représenter la fonction  $f_1$ .

On répondra par des valeurs approchées et on fera apparaître les traits de construction permettant la lecture sur le graphique.

- (a) Quel est le volume du réservoir  $R_2$  pour x = 0.8 m?
- b Quel est le rayon du réservoir  $R_2$  pour qu'il ait une contenance de  $10 \, m^3$ ?
- C Quel est l'antécédent de 9 par la fonction  $f_1$ ? Interpréter concrètement ce nombre.
- d Pour quelle valeur de x les volumes des deux réservoirs sont-ils égaux?
- e Pour quelles valeurs de x le volume de  $R_1$  est-il supérieur à celui de  $R_2$ ?