
Hors programme collège / Trigonométrie

1. Propriétés

E.1 On considère le triangle ABC rectangle en C représenté ci-dessous :

- 1 Exprimer les rapports trigonométriques: $\cos \alpha^o$; $\sin \alpha^o$; $\tan \alpha^o$
- 2 (a) Établir l'égalité suivante : $\left(\cos\alpha\right)^2 + \left(\sin\alpha\right)^2 = 1$
 - **b** Établir l'égalité suivante: $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$

2. Angles particuliers

E.2

- 1 Construire un triangle ABC équilatéral de côté 4 cm. Soit H le pied de la hauteur issue de A.
- \bigcirc Donner la valeur exacte de la longueur AH.
- $\begin{tabular}{ll} \hline \end{tabular}$ Déterminer la valeur exacte de $sin(60^o)$ dans le triangle ACH
- E.3 L'unité de longueur est le centimètre
- 1 Construire un triangle DOS tel que: DS = DO = 6; $\widehat{ODS} = 120^{\circ}$ Quelle est la nature du triangle DOS? Justifier.
- 2 Dans le triangle DOS, tracer la hauteur issue de D. Elle coupe [OS] en H.

On donne le tableau suivant:

x	00	30^{o}	45^{o}	60^{o}	90°
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\tan x$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	×

- \bigcirc Calculer la valeur exacte de OH.
- \bigcirc En déduire que: $OS = 6\sqrt{3}$
- 3 Placer le point M de [DS] tel que SM=5. Tracer la parallèle à (OS) passant par M; elle coupe [DO] en N. Calculer la valeur exacte de MN.

E.4 Soit \mathscr{C} un cercle de centre O et de rayon $4\,cm$. Soit B et C deux points diamétralement opposés et A un troisième point du cercle tel que $AC=4\,cm$.

- 1 Faire le dessin.
- \bigcirc Montrer que le triangle ABC est rectangle.

Le triangle ABC a une aire égale à $8\sqrt{2}$.

- \bigcirc En déduire la longueur de [AB].
- $\overbrace{4}$ Calculer la mesure de \widehat{ABC} .

Soit A' l'image du point A par la symétrie d'axe (BC). On note H le point d'intersection de [AA'] et (BC).

- 6 Montrer que ABA' est un triangle équilatéral.