Hors programme lycée / Fonction paire et impaire

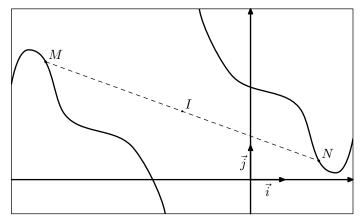
Introduction

E.1 Étude théorique:

(1) On considère une fonction f dont la courbe représentative \mathscr{C}_f admet le point I de coordonnées (a;b) comme centre de symétrie.

Prenons deux points M(x;y) et N(x';y') de la courbe \mathscr{C}_f symétriques par rapport au point I.

Le graphique ci-dessous illustre cette situation:



On suppose que les points M et N sont tels que: (quitte à inverser le rôle de M et N). x < a < x'

- (a) En utilisant le fait que le point I est le milieu du segment [MN], exprimer les coordonnées du point I en fonction des coordonnées des points M et N.
- (b) On pose h = x' a, en déduire la relation suivante: $\frac{f(a+h) + f(a-h)}{2} = b$
- (2) Effectuons la démarche inverse: nous allons montrer que sous certaines conditions, la courbe d'une fonction admet un centre de symétrie.

Supposons l'existence d'une fonction g et d'un point I(a;b) tels que:

Pour tout
$$h \in \mathbb{R}$$
 tel que $(a+h) \in \mathcal{D}_g$
alors
$$\begin{cases} (a-h) \in \mathcal{D}_g \\ \frac{g(a+h) + g(a-h)}{2} = b \end{cases}$$

Dans le reste de l'exercice, supposons que h est un nombre réel tel que $(a+h) \in \mathcal{D}_q$. Notons N le point de \mathscr{C}_q d'abscisse (a+h):

(a) Quelle propriété de la fonction g permet d'affirmer que

la courbe \mathscr{C}_g admet un point d'abscisse (a-h)?

On notera M le point de la courbe de \mathscr{C}_g ayant pour abscisse (a-h).

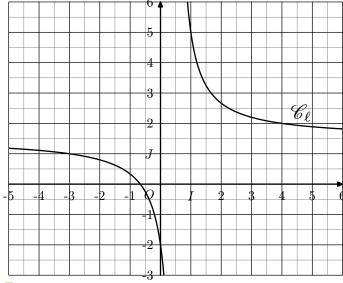
- (b) Notons M ce point; établir que les coordonnées du point N sont: $M(a-h; 2\cdot b-q(a+h))$
- \bigcirc Montrer que le point I est le milieu du segment [MN].
- (d) Justifier que la courbe \mathscr{C}_q admet le point I comme centre de symétrie.

Étude d'une fonction:

On considère la fonction ℓ définie sur $\mathbb{R}\setminus\{2\}$ par la relation:

$$\ell(x) = \frac{3x+2}{2x-1}$$

Voici la courbe représentative de cette fonction:



- (3) Quelle conjecture peut-on émettre sur une propriété géométrique de cette courbe?
- 4 a Montrer que: $\ell\left(\frac{1}{2}+h\right) = \frac{7}{4h} + \frac{3}{2}$
 - **b** Montrer que: $\ell\left(\frac{1}{2}-h\right) = -\frac{7}{4h} + \frac{3}{2}$
 - © En déduire la valeur de : $\frac{\ell\left(\frac{1}{2}-h\right)+\ell\left(\frac{1}{2}+h\right)}{2}$
 - (d) Que peut-on en déduire sur la courbe \mathscr{C}_{ℓ} ?

Etude de la parité

E.2 Étudier la parité des fonctions ci-dessous:

(a)
$$f(x) = (x-1)\cdot(x+1)$$
 (b) $g(x) = 3x^3 - 2x$ (c) $h(x) = \frac{x^2+1}{x}$ (d) $j(x) = \cos(3\cdot x^3)$

$$b g(x) = 3x^3 - 2x$$

- 1 Justifier que la fonction suivante est paire: $f: x \longmapsto e^x + e^{-x}$
- 2 Justifier que la fonction suivante est impaire: $q: x \longmapsto e^x - e^{-x}$

Axe de symétrie des courbes

(1) On considère la fonction f définie sur \mathbb{R} dont l'image de x est définie par:

$$f(x) = 2x^2 + 4x - 1$$

On note \mathscr{C}_f la courbe représentative de la fonction f.

(a) Soit h un nombre réel. Déterminer les expressions simplifiées en fonction de h de:

$$f(-1-h)$$
 ; $f(-1+h)$

- (b) En déduire une propriété géométrique de la courbe \mathscr{C}_f .
- 2 On considère la fonction g définie sur $\mathbb{R}\setminus\{1\}$ définie par: $g(x) = \frac{x^2 - x + 1}{x - 1}$

Justifier que la courbe \mathscr{C}_q , représentative de la fonction g, admet le point de coordonnée (1;1) pour centre de symétrie.

Centre de symétrie des courbes

E.5 On considère la fonction f définie sur $\mathbb{R}\setminus\{2\}$ par la relation:

$$f(x) = \frac{x^2 - 4x + 7}{2x - 4}$$

Montrer que le point I(2;0) est le centre de symétrie de la courbe \mathscr{C}_f

E.6 On considère la fonction f définie sur $\mathbb{R} - \{-3\}$ dont l'image de x est donnée par la relation :

$$f(x) = \frac{x^2 + 10x + 20}{2x + 6}$$

Montrer que la courbe \mathscr{C}_f représentative de la fonction f admet pour centre de symétrie le point K(-3;2)

E.7) On considère la fonction f définie par la relation:

$$f: x \longmapsto \frac{6x+4}{3x+1}$$

- 1 Donner l'ensemble de définition de cette fonction.
- 2 a Établir la relation:

$$f(x) = \frac{2}{3x+1} + 2$$

(b) En déduire l'écriture de la fonction q vérifiant que la relation suivante pour tout $x \in \mathcal{D}_f$:

$$f(x) = g(3x+1)$$

(3) Établir que la courbe représentative \mathscr{C}_f admet pour cen-

tre de symétrie le point de coordonnée $\left(-\frac{1}{2};2\right)$

On considère la droite (d) d'équation y=x+2. Déterminer l'ensemble des abscisses des points, sous forme de réunion d'intervalles, sur lesquels (d) se retrouve au-dessus de \mathscr{C}_f .

E.8 Soit f la fonction définie sur \mathbb{R} par:

$$f(x) = x + 2 - \frac{4 \cdot e^x}{e^x + 3}$$

 $f(x)=x+2-\frac{4\cdot \mathrm{e}^x}{\mathrm{e}^x+3}$ On désigne par $\mathscr C$ sa courbe représentative dans le plan rapporté à un repère orthonormé $(O; \overline{i}'; \overline{j})$.

On note I le point de $\mathscr C$ d'abscisse ln 3. Montrer que le point I est le centre de symétrie de la courbe \mathscr{C} .

E.9 On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{4 \cdot e^x}{e^x + 7}$$

On désigne par ${\mathscr C}$ la courbe représentative de la fonction fdans un repère orthonormé (O; i'; j').

- 1 Vérifier que pour tout réel x, on a: $f(x) = \frac{4}{1+7\cdot e^{-x}}$
- 2 Démontrer que le point I_1 de coordonnées $(\ln 7; 2)$ est un centre de symétrie de la courbe \mathscr{C} .
- Déterminer une équation de la tangente (T) à la courbe \mathscr{C} au point I.

Axe et centre de symétries de courbes

(1) Montrer que la fonction f définie sur \mathbb{R} par:

$$f(x) = \frac{6}{\frac{1}{2}x^2 + x + 2}$$

admet la droite d'équation x=-1 comme axe de symétrie.

(2) Montrer que la fonction g définie sur $\mathbb{R}\setminus\{-1\}$ par:

$$g(x) = \frac{x^2 + 4x + 2}{x + 1}$$

admet le point I(-1;2) comme centre de symétrie.

- (1) Établir que la courbe représentative de la fonction fdéfinie sur $\mathbb{R}\setminus\{2\}$ par:

$$f(x) = \frac{2x+1}{2-x}$$

admet le point I(2;-2) comme centre de symétrie.

(2) Soit g une fonction définie sur \mathbb{R} dont l'image de x est donnée par la relation:

$$g(x) = \frac{2x^2 + 4x - 4}{-x^2 - 2x - 3}$$

Montrer que la courbe \mathcal{C}_g admet la droite d'équation

1 On considère la fonction f définie sur [-5; 1] dont l'image de x est définie par la relation:

$$f(x) = \sqrt{-x^2 - 4x + 5}$$

Montrer que la courbe \mathscr{C}_f admet la droite d'équation

- x = -2 comme axe de symétrie.
- (2) On considère la fonction g définie sur $\mathbb{R}\setminus\{-1\}$ par la re-

$$g: x \mapsto \frac{x^2 + 3x + 3}{x + 1}$$

Montrer que la courbe \mathscr{C}_g admet le point (-1;1) comme centre de symétrie.

Symétrie et asymptotes obliques

E.13 On considère la fonction f dont l'image de x est définie par la relation:

$$f(x) = \frac{3x^3 + 4x^2 - 5x + 4}{4(x^2 + 1)}$$

Dans le plan muni d'un repère (O; I; J), on note \mathscr{C}_f la courbe représentative de la fonction f.

(a) Déterminer la valeur des réels a, b, c vérifiant la re-

$$f(x) = a \cdot x + b + \frac{c \cdot x}{x^2 + 1}$$

- (b) Montrer que la courbe \mathscr{C}_f admet une asymptote oblique (Δ) dont on précisera l'équation.
- (c) Étudier la position relative de la courbe \mathscr{C}_f et de la droite (Δ) .
- (2) Établir que la courbe \mathscr{C}_f admet le point de coordonnée (0;1) comme centre de symétrie.
- (a) Établir que la dérivée f' de la fonction f admet pour

$$f'(x) = \frac{(x^2 + 5)(3x^2 - 1)}{4(x^2 + 1)^2}$$

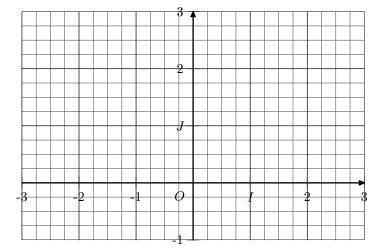
(b) Dresser le tableau de variations de la fonction f.

Remarque: on admettra les deux résultats suivants:

$$f\left(\frac{\sqrt{3}}{3}\right) = 1 - \frac{\sqrt{3}}{4} \approx 0.57$$

•
$$f\left(-\frac{\sqrt{3}}{3}\right) = 1 + \frac{\sqrt{3}}{4} \approx 1,43$$

 $\boxed{4}$ Effectuer le tracé de la courbe \mathscr{C}_f .



Symetries et dérivées

E.14)On considère la fonction f définie par la relation:

$$f(x) = \frac{3x+6}{2x^2+8x+7}$$

- $f(x) = \frac{3x+6}{2x^2+8x+7}$ Déterminer l'ensemble de définition de la fonction f.
- (2) Montrer que la courbe représentative de la fonction fadmet pour centre de symétrie le point A de coordonnée A(-2;0).
- (3) Montrer que l'expression du nombre dérivée de f en xs'exprime par la relation:

$$f'(x) = \frac{-3 \cdot (2 x^2 + 8 x + 9)}{(2 x^2 + 8 x + 7)^2}$$

(4) Établir que la courbe représentative de la fonction f' admet pour axe de symétrie la droite d'équation x=-2.

E.15 Soit f une fonction f définie sur \mathbb{R} vérifiant la limite

$$\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = -\frac{1}{2}$$

- (1) Que peut-on dire de la dérivabilité de la fonction f en 2.
- 2 Supposons que la fonction f est paire:
 - (a) Déterminer le nombre dérivé de la fonction f en -2.
 - (b) À main levée, représenter une courbe \mathscr{C}_f et ses deux tangentes en -2 et 2 vérifiant une telle situation.
- (3) Supposons que la fonction f est impaire:
 - (a) Déterminer le nombre dérivé de la fonction f en -2.
 - (b) À main levée, représenter une courbe \mathscr{C}_f et ses deux tangentes en -2 et 2 vérifiant une telle situation.

E.16 On considère la fonction f dont l'image de x est définie par la relation:

$$f(x) = \frac{-6x - 1}{3x + 1}$$

- $f(x) = \frac{-6x-1}{3x+1}$ Déterminer l'ensemble de définition de la fonction f.
- 2 (a) Montrer l'égalité suivante: $f(x) = \frac{1}{3x+1} 2$
 - (b) En déduire que la courbe représentative \mathcal{C}_f admet
- pour centre de symétrie le point I de coordonnée $\left(-\frac{1}{3};-2\right).$
- (3) Donner l'expression de la fonction dérivée de la fonction
- 4 Montrer que la courbe représentative $\mathscr{C}_{f'}$ de la fonction dérivée f' admet comme axe de symétrie la droite d'équation $x = -\frac{1}{3}$

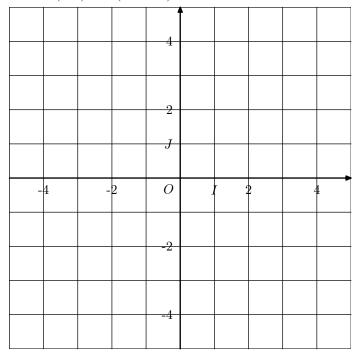
Symétries et intégrales

E.17 On considère la fonction f définie sur [-1;1] par: $f(x) = \frac{3}{2} \cdot (|x| - 1)^2$

- (1) Étudier la parité de la fonction f.
- Montrer que cette fonction est la densité d'une loi de probabilité sur [-1;1].

Symétries de courbes

1) (a) Dans le repère ci-dessous, placer les points A(-3;4), B(4;2) et C(-1;-2).



- (b) Placer les images des points A, B, C par rapport la symétrie d'axe (yy'), puis par rapport à la symétrie de centre O (l'origine du repère).
- Compléter le tableau suivant :

	Coordonnées							
	du point	de l'image par (yy')	$\begin{array}{c} \text{de l'image} \\ \text{par } O \end{array}$					
A	(-3;4)							
B	(4;2)							
C	(-1; -2)							

- (d) Compléter les phrases suivantes:
 - Les points (x;y) et (-x;y') sont symétriques par rapport à l'axe (yy')

si, et seulement si,

• Les points (x;y) et (-x;y') sont symétriques par rapport à l'origine O

si, et seulement si,

2 On considère les fonctions suivantes:

$$f: x \longmapsto x^2 \quad ; \quad g: x \longmapsto x^3 - x \quad ; \quad h: x \longmapsto |2x - 1|$$

(a) Compléter le tableau suivant:

x	-3	-2	-1	0	1	2	3
(x;f(x))							
(x;g(x))							
(x;h(x))							

- (b) Réaliser une conjecture quant à la possibilité que les courbes \mathscr{C}_f , \mathscr{C}_g et \mathscr{C}_h admette la droite (yy') comme axe de symétrie ou l'origine du repère comme centre de symétrie.
- (c) Tracer les courbes représentatives de ces fonctions sur votre calculatrice.
- (3) Étude algébrique des fonctions f et g:
 - (a) Exprimer f(-x) en fonction de x. Simplifier l'écriture de f(-x). Que remarque-t-on?
 - (b) Exprimer g(-x) en fonction de x. Simplifier l'écriture de g(-x). Que remarque-t-on?

E.19 Pour chacune des fonctions suivantes, donner leurs ensembles de définition puis étudier leurs parités:

$$a f: x \longrightarrow \sqrt{1-x^2}$$

E.20 On considère la fonction f définie sur [0;8] dont on connait uniquement le tableau de variations suivant:

x	0	1	2	3	4	5	6	7	8
f(x)	0	1	2,5	1	-2	-0.5	0	1	2

On suppose de plus que cette fonction est strictement monotone sur chacun des intervalles suivants: [0; 2], [2; 4] et [4; 8].

- 1 Dresser le tableau de variations de la fonction f.
- Donner un encadrement de f(x) dans chacun des cas suivants:

$$\bigcirc$$
 $0 \leqslant x \leqslant 4$

(b)
$$4 < x < 8$$

(a)
$$0 \le x \le 4$$
 (b) $4 < x < 8$ (c) $2 \le x < 7$

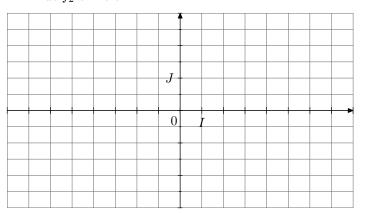
- \bigcirc Tracer, en noir, une représentation possible la fonction fdans le repère ci-dessous.
- (4) Dans cette question, on considère la fonction f_1 définie sur [-8;8] comme le prolongement paire de la fonction
 - a Compléter correctement le tableau ci-dessous:

\sim	-							
x	-8	-7	-6	-5	-4	-3	-2	-1
$f_1(x)$								

- (b) Donner l'ensemble des antécédents de 1.
- (c) Tracer dans le repère ci-dessous la courbe représentative de f_1 en rouge.
- (5) Dans cette question, on considère la fonction f_2 définie sur [-8; 8] comme le prolongement impaire de la fonction
 - a Compléter correctement le tableau ci-dessous:

x	-8	-7	-6	-5	-4	-3	-2	-1
$f_2(x)$								

- (b) On considère les points du plan suivant:
 - A(-4;2) ; B(3;1) ; C(4;-2) ; D(-3;-1)Justifier que le quadrilatère ABCD est un parallélogramme.
- (c) Tracer dans le repère ci-dessous la courbe représentative de f_2 en vert.



E.21

1) Soit f une fonction définie sur un intervalle I centré en

On définit les deux fonctions suivantes:

$$g: x \longmapsto \frac{f(x) + f(-x)}{2} \quad ; \quad h: x \longmapsto \frac{f(x) - f(-x)}{2}$$

Étudier la parité de la fonction g et h.

2 Soit j une fonction impaire définie sur \mathcal{D}_j tel que $0 \in \mathcal{D}_j$. Montrer que: j(0) = 0

E.22 Donner l'ensemble de définition et la parité des fonctions suivantes:

$$a f: x \longmapsto x(x+2)^2$$

$$b g: x \longmapsto \sqrt{x^2 - 1}$$

(a)
$$f: x \longmapsto x(x+2)^2$$
 (b) $g: x \longmapsto \sqrt{x^2 - 2}$
(c) $h: x \longmapsto \frac{1}{(x-4)(x+4)}$ (d) $j: x \longmapsto \frac{1}{2}x \cdot |x|$

E.23 On se place dans un repère orthogonal (O; I; J)

- (1) (a) Soit M un point du plan de coordonnée (x;y). Donner les coordonnées de l'image du point M par la symétrie orthogonal d'axe (OJ).
- (b) Soit f une fonction définie sur \mathbb{R} , vérifiant pour tout nombre réel x:

$$f(x) = f(-x)$$

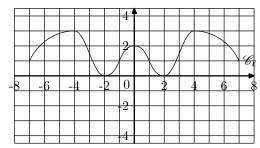
Montrer que la fonction f est paire.

- (2) (a) Soit M un point du plan de coordonnée (x;y). Donner les coordonnées de l'image du point M par la symétrie centrale de centre O.
 - (b) Soit f une fonction définie sur \mathbb{R} , vérifiant pour tout nombre réel x:

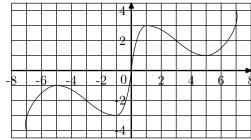
$$f(x) = -f(-x)$$

Montrer que la fonction f est impaire.

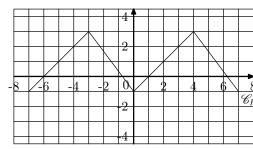
1 Pour chacune des fonctions, calculer les images demandées:



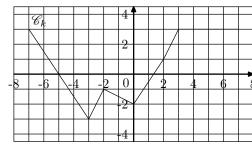
Calculer f(-6), f(-2), f(0), f(2) et f(6).



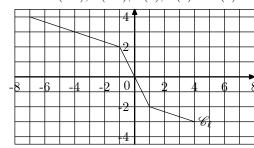
Calculer g(-7), g(-1), g(0), g(1) et g(7).



Calculer h(-3), h(0) et g(3).



Calculer k(-3), k(-2), k(0), k(2) et k(3).



2 Pour chacune des fonctions suivantes dites si elle est paire, impaire ou aucun des deux.

10. Symétrie de courbes

E.25 G On considère la fonction f définie par :

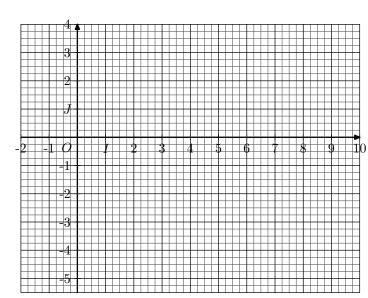
$$f:x \longmapsto \frac{1}{4}{\cdot}x^2 - 2{\cdot}x - 1$$

1 À l'aide de la calculatrice, compléter le tableau ci-dessous avec des valeurs arrondies au centième près:

x	-2	-0,5	1	2	3	3,5	4
f(x)							

x	4,5	5	6	7	8,5	10
f(x)						

2 Effectuer le tracé de la courbe \mathscr{C}_f dans le repère $\left(O;I;J\right)$ ci-dessous :



3 Cette courbe possède un axe de symétrie, tracer cet axe sur votre représentation.

E.26 $\begin{cases} \begin{cases} E.26 \end{cases} \begin{cases} \begin$

Pour seule connaissance de la fonction f, on a le tableau de valeurs ci-dessous:

x	-5	-3	-2	0	2	4
f(x)	36	0	-9	-9	15	63

- 1 Donner l'équation de l'axe de symétrie de la courbe \mathscr{C}_f .
- 2 Donner les deux antécédents du nombre 0 par la fonction f.
- \bigcirc Donner l'expression de la fonction f.

E.27 General On considère la fonction f dont l'image d'un nombre réel x est définie par :

$$f(x) = -2x^2 + 4x + 3$$

- \bigcirc Dresser le tableau de variations de la fonction f.
 - $oxed{b}$ Préciser les caractéristiques de l'extrémum de la fonction f.
- 2 Soit h un nombre quelconque positif:
 - a Déterminer la forme développée et réduite des deux expressions suivantes:

$$f(1-h)$$
 ; $f(1+h)$

b Que peut-on dire sur les deux points de \mathscr{C}_f d'abscisses respectives (1-h) et (1+h).