Hors programme lycée / Triangle rectangle et cercle circonscrit

1. Exercices non-classés

 $\begin{tabular}{ll} \hline \textbf{E.1} & \textbf{f} & Le \ plan \ est \ muni \ d'un \ repère \ orthonorm\'e\ (O\ ;\ I\ ;\ J). \\ L'unit\'e\ de \ longueur \ est \ le \ centim\`etre. \\ \end{tabular}$

- 1 (a) Placer le point A(5;3).
 - (b) Par lecture graphique, donner les coordonnées de \overrightarrow{IA} .
 - c En déduire la distance IA.
- 2 On considère le point $B\left(-1; \sqrt{21}\right)$.
 - (a) Prouver que A et B sont sur le cercle de centre I et de rayon 5.
 - \bigcirc Tracer ce cercle et placer le point B.
- (3) (a) Placer le point C, image du point A par la symétrie de centre I.
 - (b) Prouver que le triangle ABC est rectangle en B.

E.2 § On considère le plan muni d'un repère (O; I; J) et le cercle $\mathscr C$ de centre K(2; -3) et de rayon 5.

- 1 Justifier que le point A(6;-6) est un point du cercle \mathscr{C}
- 2 Considérons le point B diamétralement opposé au point A dans le cercle $\mathscr C$. Déterminer les coordonnées du point B.
- 3 Soit C le point du plan de coordonnés $\left(-\frac{14}{5}; -\frac{8}{5}\right)$. Justifier que le triangle ABC est rectangle en C.

E.3 $\{G(G), G(G), G(G),$

- 1 Justifier que le point A(6;-6) est un point du cercle \mathscr{C}
- 2 Considérons le point B diamétralement opposé au point A dans le cercle \mathscr{C} . Déterminer les coordonnées du point B.
- 3 Soit C le point du plan de coordonné $\left(-\frac{14}{5}; -\frac{8}{5}\right)$. Justifier que le triangle ABC est rectangle en C.

E.4 On se place dans un repère orthonormé (O; I; J). On considère les trois points suivants:

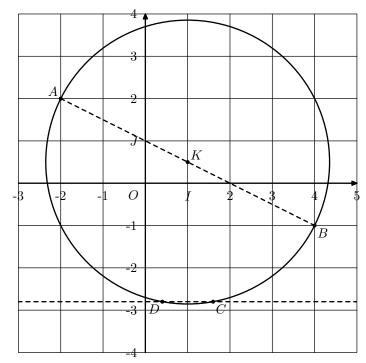
$$A(1;5)$$
 ; $B(-1;3)$; $K(7;-1)$

(A titre facultatif, on peut créer un repère et placer les points au fur et à mesure de l'exercice)

- 1 On considère le point G le milieu du segment [BK]. Déterminer les coordonnées du point G.
- 2 Soit R, l'image du point A par la symétrie de centre G. Déterminer, par le calcul, les coordonnées du point R.
- 3 Montrer que: $BK = 4\sqrt{5} cm$
- 4 On admet que $RA = 4\sqrt{5}$ cm. Montrer, sans effectuer de calculs, que ABRK est un rectangle.
- 5 On considère le cercle (\mathscr{C}) de diamètre [BK] et le point E de coordonnées $\left(-\frac{7}{5}; \frac{9}{5}\right)$; montrer que le point E appartient au cercle \mathscr{C} .
- \bigcirc En déduire, sans aucun calcul, que le triangle BEK est rectangle en E.

E.5 Dans le plan muni d'un repère (O;I;J), on considère les trois points:

$$A(-2;2)$$
 ; $B(4;-1)$; $K(1;\frac{1}{2})$



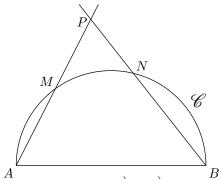
On considère le cercle $\mathscr C$ de diamètre [AB].

- 1 Justifier que le cercle $\mathscr C$ admet le point K pour centre et dont le rayon a pour mesure $\frac{\sqrt{45}}{2}$.
- 2 On considère le point C de coordonnées $\left(\frac{8}{5}; -\frac{14}{5}\right)$.
 - (a) Justifier que le point C est un point du cercle \mathscr{C} .
 - b Donner la nature du triangle ABC. Justifier votre réponse.

- 3 La droite d'équation $y = -\frac{14}{5}$ intercepte le cercle \mathscr{C} aux points C et D.
 - a Justifier que le point D vérifie l'équation : $\left(x_D-1\right)^2=\frac{9}{25}$
 - (b) En déduire les coordonnées du point D.
- E.6 On considère le plan muni d'un repère (O; I; J) orthonormé. On considère les trois points:

$$A(-1;4)$$
 ; $B(-3;-2)$; $C(0;1-\sqrt{6})$

- 1 Démontrer que le triangle ABC est rectangle en C.
- 2 Déterminer, au degré près, la mesure de l'angle \widehat{BAC} .
- 3 a Sans justification, déterminer les coordonnées du point D diamétralement opposé au point C dans le cercle de diamètre [AB].
- b Montrer que le quadrilatère ADBC est un rectangle.
- E.7 Dans le plan, on considère un demi-cercle \mathscr{C} de diamètre [AB]; soit M et N deux points de \mathscr{C} tels que les demi-droites [AM) et [BN) s'interceptent au point P:



- 1 Déterminer la valeur de $\overrightarrow{AM} \cdot \overrightarrow{BM}$.
- 2 Établir l'égalité suivante:

$$AB^2 = AP \times AM + PB \times NB$$