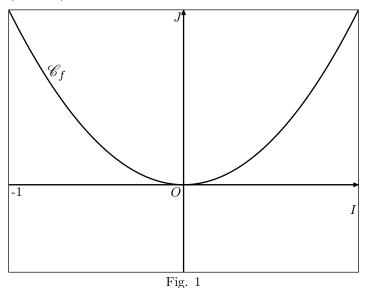


Etudions une propriété de la courbe représentative \mathscr{C}_f de la fonction carré notée f.

Ci-dessous est donnée la courbe \mathscr{C}_f dans un repère (O;I;J):



Des propriétés géométriques caractérisent cette courbe. Pour les étudier, on associe à \mathcal{C}_f deux objets géométriques :

Son foyer $F\left(0; \frac{1}{4}\right)$; Sa directrice $(\Delta): y = -\frac{1}{4}$

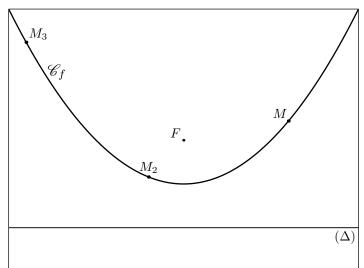


Fig. 2

1. Etude du point M dans la Fig. 2 :

a. Placer le point N intersection de la droite (Δ) et de la droite passant par le point M et perpendi-

culaire à la droite (Δ) .

- b. Comparer les distances MN et MF.
- 2. On note N_2 (resp. N_3) le projeté orthogonal du point M_2 (resp. M_3) sur la droite (Δ). Comparer les couples de longueurs :
 - a. M_2F et N_2M_2
- b. M_3F et M_3N_3

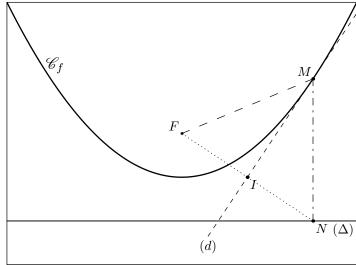


Fig. 3

3. Dans la figure 3:

Prenons un point M quelconque de la courbe \mathscr{C}_f , associons le point N projeté du point M sur la directrice (Δ) . Notons I le milieu du segment [FN].

On note a l'abscisse du point M.

a. Justifier les coordonnées des points suivants :

$$M(a\,;a^2)$$
 ; $N\left(a\,;-rac{1}{4}
ight)$

b. Démontrer que la droite (d) est la médiatrice du segment [FN].

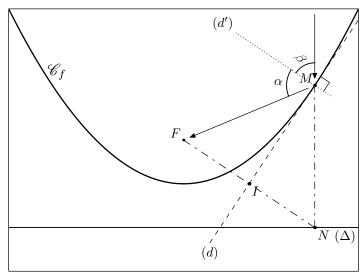


Fig. 4

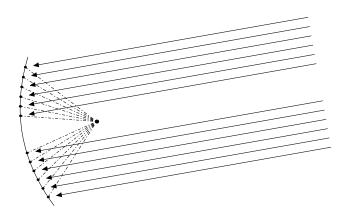
4. Dans la figure 4:

Dans cette question nous allons montrer que si un rayon (symbolisé par les flèches) et perpendiculaire à la directrice de la parabole vient se réflèchir sur la parabole alors il se dirigera vers le foyer.

Pour cela, on considérons la droite (d') perpendiculaire à la droite (d) et passant par le point M. Le rayon et la perpendiculaire définissent alors deux angles de mesures α et β .

Le but de la question est de montrer que les mesures α et β sont égales.

- a. Justifier que l'angle \widehat{FNM} a pour mesure β .
- b. En déduire l'égalité des mesures α et β .



Approfondissement:

En classe de première, nous pourrons établir que la droite (d) est la tangente à la courbe \mathscr{C}_f au point de contact M (Fig. 3).

En classe de seconde, nous pouvons montrer que :

- La droite (d) intercepte la courbe \mathscr{C}_f en un seul point;
- La courbe \mathscr{C}_f est du même côté de la droite (d).

Notons a l'abscisse du point M.

- 1. Montrer que la droite (d) admet pour équation : $y = 2a \cdot x a^2$
- 2. a. Etablir que l'équation $x^2-2a \cdot x+a^2=0$ admet une unique solution.
 - b. En déduire que la droite (d) et la courbe \mathscr{C}_f s'interceptent en un seul point.
- 3. Pour prouver que la courbe \mathscr{C}_f se situe toujours au dessus de la droite (d), étudier le signe de l'expression :

$$f(x) - \left(2a \cdot x - a^2\right)$$