Opérations algébriques élémentaires Additions Pour tous nombres a, b et c: a+b+c=(a+b)+c=a+(b+c)a + b = a - (-b)a - b = a + (-b) $\overline{2}$ 3 Multiplications Pour tous nombres a, b et c: $1 \times a = a$ et $a \times b = b \times a$ $a \times b \times c = (a \times b) \times c$ 5 $= a \times (b \times c)$ Fractions Pour a et b quelconques, $c \neq 0$ et $d \neq 0$: $\frac{a}{1} = a$ et $-\frac{a}{c} = \frac{-a}{c} = \frac{a}{-c}$ $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$ $\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$ 7 8 $\frac{a}{c} \times \frac{b}{d} = \frac{a \times b}{c \times d}$ 9 $\frac{d \times a}{d \times c} = \frac{a}{c}$ 10 $a \times \frac{b}{c} = \frac{a \times b}{c} = \frac{a}{c} \times b$ 11 $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} \qquad (avec \ b \neq 0)$ 12 Puissances Définition: pour a quelconque et n un entier positif. $a^{-n} = \frac{1}{a^n}$ 13 $a^n = \underbrace{a \times \cdots \times a}$ Cas particuliers: (a réel quelconque, $n \neq 0$) 14 $0^0 = 1, \quad 0^n = 0$ Généralités: pour a et b deux nombres réels non-nuls, et net p deux entiers relatifs: $\boxed{16} \quad a^n = \frac{1}{a^{-n}}$ $\boxed{15} \ a^n \times b^n = (a \times b)^n$ $\boxed{17} \ \frac{1}{a^n} = \left(\frac{1}{a}\right)^n$ $\begin{array}{cc}
\underline{18} & \underline{a}^n \\
\underline{b}^n \\
\underline{20} & \underline{a}^n \\
\underline{a}^p = a^{n-p}
\end{array}$ $\boxed{19}a^n \times a^p = a^{n+p}$ 21 $(a^n)^p = a^{n \times p}$ Racines carrés Pour a et b deux nombres positifs non-nuls. 22 $\sqrt{0} = 0$ $\sqrt{a^2} = a$ $\frac{1}{\sqrt{a}} = \sqrt{\frac{1}{a}}$ 23 24 $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$ 25 $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ 26 Distributivité et identités remarquables: Pour tous nombres a, b, c et k: Développer 27 $k \times (a+b) = k \times a + k \times b$ 28 $k \times (a - b) = k \times a - k \times b$ $(a+b)^2 = a^2 + 2 \times a \times b + b^2$ 29 $(a-b)^2 = a^2 - 2 \times a \times b + b^2$ 30 $(a+b)(a-b) = a^2 - b^2$ 31 Factoriser Opérations algébriques élémentaires Additions Pour tous nombres a, b et c: a+b+c=(a+b)+c=a+(b+c)2 a + b = a - (-b)3 a - b = a + (-b)Multiplications Pour tous nombres a, b et c: $1 \times a = a$ $_{
m et}$ $a \times b = b \times a$ $a \times b \times c = (a \times b) \times c$ 5 $= a \times (b \times c)$ Fractions Pour a et b quelconques, $c \neq 0$ et $d \neq 0$: 6 $\frac{a}{1} = a$ et $-\frac{a}{c} = \frac{-a}{c} = \frac{a}{-c}$ $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$ $\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$ 7 8 $\frac{a}{c} \times \frac{b}{d} = \frac{a \times b}{c \times d}$ 9 $\frac{d \times a}{d \times c} = \frac{a}{c}$ 10 $a \times \frac{b}{c} = \frac{a \times b}{c} = \frac{a}{c} \times b$ 11 $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} \qquad (avec \ b \neq 0)$ 12 Puissances Définition: pour a quelconque et n un entier positif. $a^{-n} = \frac{1}{a^n}$ 13 $a^n = a \times \cdots \times a$ Cas particuliers: (a réel quelconque, $n \neq 0$) $\boxed{14}$ $0^0 = 1, \quad 0^n = 0$ Généralités: pour a et b deux nombres réels non-nuls, et net p deux entiers relatifs: $15 a^n \times b^n = (a \times b)^n$ $\boxed{16} \quad a^n = \frac{1}{a^{-n}}$ $\boxed{17} \ \frac{1}{a^n} = \left(\frac{1}{a}\right)^n$ $\begin{array}{ll}
\underline{18} & \frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n \\
\underline{20} & \frac{a^n}{a^p} = a^{n-p}
\end{array}$ $\boxed{19a^n \times a^p = a^{n+p}}$ 21 $(a^n)^p = a^{n \times p}$ Distributivité et identités remarquables: Pour tous nombres a, b, c et k: Développer 22 $k \times (a+b) = k \times a + k \times b$ 23 $k \times (a - b) = k \times a - k \times b$ $(a+b)^2 = a^2 + 2 \times a \times b + b^2$ 24 $(a-b)^2 = a^2 - 2 \times a \times b + b^2$ 25 $(a+b)(a-b) = a^2 - b^2$ 26 Factoriser