Second degré: factorisation, variations A. Sens de variations:

 $1.\ Proposition:$

Soit f une fonction du second degré:

Proposition:

•a<0

Soit f une fonction du second degré définie par: $f(x) = a \cdot x^2 + b \cdot x + c \quad a \neq 0$ La forme canonique de la fonction f admet pour expres $f(x) = a \cdot \left(x + \frac{b}{2 \cdot a}\right)^2 - \frac{b^2 - 4 \cdot a \cdot c}{4 \cdot a}$ • Pour a < 0: et sur l'intervalle $\left[-\infty; -\frac{b}{2a} \right]$, démontrons le sens de variation:

 $+\infty$

$$f(x) = a \cdot x^2 + b \cdot x + c \quad a \neq 0$$
La forme canonique de la fonction f admet pour expression:
$$f(x) = a \cdot \left(x + \frac{b}{2 \cdot a}\right)^2 - \frac{b^2 - 4 \cdot a \cdot c}{4 \cdot a}$$
• Pour $a < 0$: et sur l'intervalle $\left] - \infty ; -\frac{b}{2 \cdot a}\right]$, démontrons le sens de variation:
Pour tout nombre x_1 et x_2 appartenant à l'intervalle $\left] - \infty ; -\frac{b}{2 \cdot a}\right]$ tels que $x_1 < x_2$, on a:
$$x_1 < x_2 < -\frac{b}{2 \cdot a}$$

$$x_1 + \frac{b}{-1} < x_2 + \frac{b}{-1} < 0$$

 $x_1 + \frac{b}{2 \cdot a} < x_2 + \frac{b}{2 \cdot a} < 0$ La fonction carré est décroissante sur \mathbb{R}_{-} :

$$x_1 + \frac{b}{2 \cdot a} < x_2 + \frac{b}{2 \cdot a} < 0$$
The function carrée est décroissante sur \mathbb{R}_- :
$$\left(x_1 + \frac{b}{2 \cdot a}\right)^2 > \left(x_2 + \frac{b}{2 \cdot a}\right)^2$$
The number a est strictement négatif:
$$a \cdot \left(x_1 + \frac{b}{2 \cdot a}\right)^2 > a \cdot \left(x_2 + \frac{b}{2 \cdot a}\right)^2$$

$$+ \frac{b}{2 \cdot a}\right)^2 - \frac{b^2 - 4 \cdot a \cdot c}{4 \cdot a} > a \cdot \left(x_2 + \frac{b}{2 \cdot a}\right)^2 - \frac{b^2 - 4 \cdot a \cdot c}{4 \cdot a}$$

Le nombre a est strictement négatif

$$\left(x_1 + \frac{b}{2 \cdot a}\right) > \left(x_2 + \frac{b}{2 \cdot a}\right)$$
 Le nombre a est strictement négatif:
$$a \cdot \left(x_1 + \frac{b}{2 \cdot a}\right)^2 > a \cdot \left(x_2 + \frac{b}{2 \cdot a}\right)^2$$

$$a \cdot \left(x_1 + \frac{b}{2 \cdot a}\right)^2 - \frac{b^2 - 4 \cdot a \cdot c}{4 \cdot a} > a \cdot \left(x_2 + \frac{b}{2 \cdot a}\right)^2 - \frac{b^2 - 4 \cdot a \cdot c}{4 \cdot a}$$

$$f(x_1) < f(x_2)$$
 Deux nombres de l'intervalle $\left] -\infty ; -\frac{b}{2 \cdot a}\right]$ et leurs images par la fonction f sont comparés dans le même sens: la fonction f est croissante sur cet intervalle. • Les autres cas se démontrent de la même façon.

 $2.\ Illustration$:

a>0

<u>Corollaire :</u>

torisée.

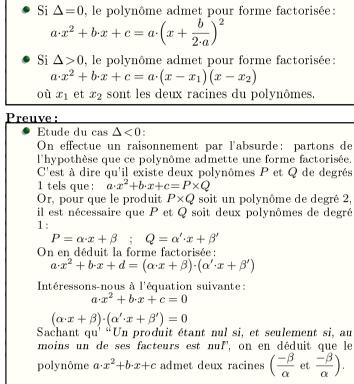
B. Factorisation:

On considère un polynôme $a \cdot x^2 + b \cdot x + c$ du second degré $(a \neq 0)$. L'étude des racines d'un polynôme se fait par dis-

Si $\Delta < 0$, le polynôme n'admet **aucune** forme fac-

jonction de cas sur la valeur du discriminant Δ :

a < 0



Ce qui est absurde puisque, lorsque $\Delta < 0$, le polynôme $a \cdot x^2 + b \cdot x + c$ n'admet aucune racine. Ainsi, l'hypothèse de départ est fausse : le polynôme $a \cdot x^2 +$

 $=a\cdot \left(x+\frac{b}{2\cdot a}\right)^2-\frac{\Delta}{4\cdot a}=a\cdot \left(x+\frac{b}{2\cdot a}\right)^2-\frac{0}{4\cdot a}=a\cdot \left(x+\frac{b}{2\cdot a}\right)^2$

 $=a\cdot\left[\left(x+\frac{b}{2\cdot a}\right)^2-\frac{\left(\sqrt{\Delta}\right)^2}{\left(2\cdot a\right)^2}\right]=a\cdot\left[\left(x+\frac{b}{2\cdot a}\right)^2-\left(\frac{\sqrt{\Delta}}{2\cdot a}\right)^2\right]$

 $= a \left(x + \frac{b + \sqrt{\Delta}}{2 \cdot a} \right) \left(x + \frac{b - \sqrt{\Delta}}{2 \cdot a} \right) = a \left(x - \frac{-b - \sqrt{\Delta}}{2 \cdot a} \right) \left(x - \frac{-b + \sqrt{\Delta}}{2 \cdot a} \right)$

On reconnait les deux racines x_1 et x_2 du polynôme:

En partant de la forme canonique d'un polynôme du second

 $b \cdot x + c$ n'admet pas de forme factorisée.

La forme canonique permet d'écrire: $a \cdot x^2 + b \cdot x + c = a \cdot \left(x + \frac{b}{2 \cdot a}\right)^2 - \frac{b^2 - 4 \cdot a \cdot c}{4 \cdot a}$

Etude du cas $\Delta = 0$:

Etude du cas $\Delta > 0$:

degré, on a:

 $=a\cdot(x-x_1)(x-x_2)$

discriminant: \bullet $\Delta < 0$:

 $\Delta = 0$:

 $\Delta > 0$:

On peut écrire: $(\sqrt{\Delta})^2 = \Delta$

 $=a\cdot \Big(x+\frac{b}{2\cdot a}+\frac{\sqrt{\Delta}}{2\cdot a}\Big)\Big(x+\frac{b}{2\cdot a}-\frac{\sqrt{\Delta}}{2\cdot a}\Big)$

 $a \cdot x^2 + b \cdot x + c$

 $a \cdot x^2 + b \cdot x + c$

 $a \cdot x^2 + b \cdot x + c$

 $a \cdot x^2 + b \cdot x + c$ où $a \neq 0$

On a les comparaisons: Δ

 $a \cdot x^2 + b \cdot x + c$

 $a \cdot x^2 + b \cdot x + c$

 $\Delta > 0$

 $\mathbf{Exemple}:$

deux courbes:

courbes:

$a \cdot x^2 + b \cdot x + c = a \cdot \left(x + \frac{b}{2 \cdot a}\right)^2 - \frac{b^2 - 4 \cdot a \cdot c}{4 \cdot a} = a \cdot \left(x + \frac{b}{2 \cdot a}\right)^2 - \frac{\Delta}{4 \cdot a}$ $=\cdot \left(x+\frac{b}{2\cdot a}\right)^2 - \frac{\left(\sqrt{\Delta}\right)^2}{4\cdot a} = a\cdot \left[\left(x+\frac{b}{2\cdot a}\right)^2 - \frac{\left(\sqrt{\Delta}\right)^2}{4\cdot a^2}\right]$

C. Etude du signe: 1. Proposition: Proposition: Soit $a \cdot x^2 + b \cdot x + c$ un polynôme du second degré $(a \neq 0)$,

l'étude du signe du polynôme dépend de la valeur de son

Signe de a

Signe

de a

où x_1 et x_2 sont les deux racines du polynôme.

On considère un polynôme du second degré écrit sous

 $\Delta < 0$: le polynôme admet la forme canonique: $a \cdot x^2 + b \cdot x + c = a \cdot \left[\left(x + \frac{b}{2 \cdot a} \right)^2 - \frac{\Delta}{4 \cdot a^2} \right] \quad (*)$

Ainsi, le signe de (*) ne dépend que du signe de a.

 $\Delta = 0$: on a: $a \cdot x^2 + b \cdot x + c = a \cdot \left(x + \frac{b}{2 \cdot a}\right)^2$

Signe de a

On obtient le tableau de signe

 x_1

 ϕ

 $\frac{\Delta}{4 \cdot a^2} > 0 \quad \Longrightarrow \quad \left(x + \frac{b}{2 \cdot a} \right)^2 - \frac{\Delta}{4 \cdot a^2} > 0$

Signe de a

en notant x_1 et x_2 les deux racines

Signe de a

 $d\mathbf{u}$

Signe de a

Signe

de -a

 $+\infty$

Signe de a

 $\left(-\frac{b}{2a};0\right)$

 $\left(-\frac{b}{2a};\,0\right)$

Dans le plan muni d'un repère (O; I; J), on considère les courbes \mathcal{C}_f et \mathcal{C}_g représentatives des fonctions f et g définies

 $f(x) = -2 \cdot x^2 - 5x + 1$; $g(x) = 6 \cdot x^2 + x - 4$ Ci-dessous est donnée la représentation graphique de ces

f(b)

On remarque les deux positions relatives de ces deux

• Relativement à la droite d'équation x=a, la courbe \mathscr{C}_f

Relativement à la droite d'équation x=b, la courbe \mathscr{C}_f

3. Position relative de courbes:

 $-2 \cdot x^2 - 5x + 1 > 6 \cdot x^2 + x - 4$ $-8 \cdot x^2 - 6 \cdot x + 5 > 0$ Le polynôme du membre de gauche est un polynôme du second degré dont le discriminant a pour valeur: $\Delta = b^2 - 4 \cdot a \cdot c = (-6)^2 - 4 \times (-8) \times 5 = 36 + 160 = 196$ $\sqrt{\Delta} = \sqrt{196} = 14$

f(x) > g(x)

est au dessus de la courbe \mathscr{C}_g .

est au dessous de la courbe \mathscr{C}_q .

Résolvons l'inéquation:

On a la simplification: Le discriminant étant strictement positif, ce polynôme admet les deux racines suivantes: $x_1 = \frac{-b - \sqrt{\Delta}}{2}$ $x_2 = \frac{-b + \sqrt{\Delta}}{2 \cdot a} = -\frac{5}{4}$ $2 \cdot a$ 2

négatif, on obtient le tableau de signe ci-dessous: On en déduit les positions relatives des courbes \mathscr{C}_f et \mathscr{C}_q :

 $\left]-\infty; -\frac{5}{4}\right] \cup \left[\frac{1}{2}; +\infty\right[, \text{ on a la comparaison:}\right]$ $f(x) \leqslant g(x)$ On en déduit que la courbe \mathcal{C}_f est située au dessous de la courbe \mathscr{C}_q . Sur $\left[-\frac{5}{4}; \frac{1}{2}\right]$, on a la comparaison: $f(x) \geqslant g(x)$ on en déduit que la courbe \mathscr{C}_f est située au dessus de la courbe \mathscr{C}_g .