Proposition: (Identité de Bézout)

Soit a et b deux entiers relatifs non-nuls. On note d le PGCD de a e de b:

 $d = \operatorname{pgcd}(a; b).$

Il existe au moins un couple d'entiers relatifs (u; v) tel $u \cdot a + v \cdot b = d$ que:

Démonstration :

Soit E l'ensemble formé par l'ensemble des nombres de la forme : $u \cdot a + v \cdot b$ où $u \in \mathbb{Z}$ et $v \in \mathbb{Z}$.

On peut noter l'ensemble E sous la forme :

$$E = \{ u \cdot a + v \cdot b \mid u \in \mathbb{Z}, v \in \mathbb{Z} \}$$

On note F l'ensemble des nombres strictement positifs contenus dans E. C'est-à-dire : $F = E \cap \mathbb{N}^*$.

Montrons que F n'est pas vide. Effectuons une disjonction de cas sur le signe de a (a est non nul) :

• Si a > 0 alors $1 \cdot a + 0 \cdot b > 0$ Ainsi, $a \in F : F$ est non-vide.

• Si a < 0 alors $(-1) \cdot a + 0 \cdot b > 0$ Ainsi, $-a \in F : F$ est non-vide.

F est un sous-ensemble non vide de \mathbb{N} . On admet alors qu'il possède un plus petit élément. Notons kce plus petit élément et $(u_0; v_0)$ le couple d'entiers relatifs définissant k comme un élément de E: $u_0 \cdot a + v_0 \cdot b$

Nous alllons montrer que ce plus petit élément est pgcd (a;b). C'est à dire que k=d.

ullet La division euclidienne de a par k donne l'existence d'un couple d'entiers relatifs (q;r) vérifiant:

$$a = q \cdot k + r$$
 ; $0 \le r < k$.

On a les égalités suivantes :

$$a = q \cdot k + r \implies a = q \cdot (u_0 \cdot a + v_0 \cdot b) + r$$

$$\implies a - q \cdot u_0 \cdot a - q \cdot v_0 \cdot b = r$$

$$\implies (1 - q \cdot u_0) \cdot a + (-q \cdot v_0) \cdot b = r$$

On vient de montrer que $r \in E$.

Montrons que l'entier r est nul par un raisonnement par l'absurde :

Supposons que r>0. Ainsi, on a $r \in F$ et il vérifie r < k. Ces résultat contredisent le fait que kest le plus petit élément de F.

On en déduit que : $r \leq 0$. Ainsi, on vient de montrer que r=0.

Le reste de la division euclidienne de a par kétant nul : l'entier k divise a.

Par un raisonnement similaire sur l'entier b, on montre que l'entier k divise b.

k étant un diviseur commun aux entiers a et b, on en déduit que k divise pgcd(a;b): k divise d.

- d est le PGCD des entiers a et b. Ainsi, on a :
 - \Rightarrow d divise $a \Longrightarrow d$ divise $u_0 \cdot a$;
 - \Rightarrow d divise $b \Longrightarrow d$ divise $v_0 \cdot b$;

Ainsi, d divise $u_0 \cdot a + v_0 \cdot b$: d divise k.

On vient de montrer que "k divise d" et que "d divise

On en déduit : $d = k = a \cdot u_0 + b \cdot v_0$

Ce qui montre l'existence du couple d'entiers relatifs

recherché.

Théorème : (de Bézout)

Soit a et b deux entiers relatifs non-nuls. pgcd(a;b)=1 si, et seulement si, il existe un couple d'entiers relatifs (u; v) tel que : $u \cdot a + v \cdot b = 1$.

Démonstration :

- pgcd $(a;b)=1 \Longrightarrow \exists (u;v), u \cdot a + v \cdot b = 1$ Cette implication est établie par l'identité de Bé-
- $\bullet \exists (u;v), u \cdot a + v \cdot b = 1 \Longrightarrow \operatorname{pgcd}(a;b) = 1$ Supposons l'existence du couple $(u; v) \in \mathbb{Z} \times \mathbb{Z}$ tel $u \cdot a + v \cdot b = 1$

Notons $d=\operatorname{pgcd}(a;b)$. Il existe k et k' deux entiers relatifs vérifiant : $a = k \cdot d$; $b = k' \cdot d$

On a les égalités suivantes :

$$u \cdot a + v \cdot b = 1 \Longrightarrow u \cdot (k \cdot d) + v \cdot (k' \cdot d) = 1$$

 $\Longrightarrow d \cdot (k \cdot u + k' \cdot v) = 1$

On en déduit que d divise 1. Donc d=1. Ce qui établit l'implication réciproque.

Théorème : (de Gauss)

Soit a, b et c trois entiers relatifs non-nuls. Si a divise $b \cdot c$ et si a et b sont premiers entre eux alors a divise c

Démonstration :

a divise $b \cdot c$. On en déduit l'existence d'un entier relatif k tels que : $b \cdot c = k \cdot a$

 $\operatorname{pgcd}(a;b) = 1.$ a et b étant premiers entre eux : D'après l'identité de Bézout, on en déduit l'existence d'un couple d'entiers (u; v) vérifiant : $a \cdot u + b \cdot v = 1$

On a les égalités suivantes :

$$a \cdot u + b \cdot v = 1 \implies c \cdot (a \cdot u + b \cdot v) = c$$

 $\implies a \cdot (u \cdot c) + (b \cdot c) \cdot v = c$

D'après la première remarque :

$$\implies a \cdot (u \cdot c) + (k \cdot a) \cdot v = c \implies a \cdot (u \cdot c + v) = c$$

L'égalité précédente montre que l'entier a divise c.

Corollaire:

Soit a, b et c trois entiers relatifs non-nuls. Si pgcd (a;b) = 1 et si a et b divisent c alors $a \cdot b$ divise

Preuve:

Puisque a divise c, il existe un entier relatif k vérifiant :

Puisque b divise c, alors b divise $k \cdot a$.

Or, a et b sont premiers entre eux et b divise le produit $k \cdot a$. D'après le théorème de Gauss, on en déduit que bdivise k.

On en déduit l'existence d'un entier relatif k' vérifiant : $b = k' \cdot k$.

Ainsi, on a les égalités suivantes :

$$c = k \cdot a \implies c = (k' \cdot b) \cdot a \implies c = k' \cdot (a \cdot b)$$

On vient de montrer que $a \cdot b$ divise l'entier relatif c.