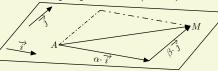
Définition:

Trois points A, B et C non-alignés caractérisent un unique plan noté (ABC).

L'ensemble des points M du plan (ABC) se caractérisent par la relation :

$$\overrightarrow{AM} = \alpha \cdot \overrightarrow{AB} + \beta \cdot \overrightarrow{AC} \quad \text{où } \alpha, \beta \in \mathbb{R}$$



Le couple de vecteur $(\overrightarrow{AB}; \overrightarrow{AC})$ est un **couple de vecteurs directeurs** du plan (ABC).

Tout couple de vecteurs $(\overrightarrow{i}; \overrightarrow{j})$ non-colinéaires et admettant un représentant dans un plan (\mathcal{P}) forme un couple de vecteurs directeurs.

Pour tout point A du plan (\mathcal{P}) , le triplet $(A; \overrightarrow{i}; \overrightarrow{j})$ forme un repère du plan (\mathcal{P}) .

Définition:

Trois vecteurs \overrightarrow{i} , \overrightarrow{j} et \overrightarrow{k} sont **coplanaires** s'ils admettent trois représentant dans un même plan

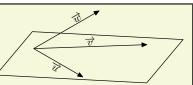
Proposition:

Soit \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs de l'espace.

 \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires $\iff \exists (\alpha; \beta; \gamma) \neq (0; 0; 0), \quad \overrightarrow{\alpha \cdot u} + \beta \cdot \overrightarrow{v} + \gamma \cdot \overrightarrow{w} = \overrightarrow{0}$

Remarque:

Si les vecteurs \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} ne sont pas coplanaires, alors l'équation $\alpha \cdot \overrightarrow{u} + \beta \cdot \overrightarrow{v} + \gamma \cdot \overrightarrow{w} = 0$ admet pour unique solution le triplet (0;0;0)



Proposition:

Soit (\mathcal{P}) un plan admettant les vecteurs \overrightarrow{u} et \overrightarrow{v} comme vecteurs directeurs où : \overrightarrow{u} (a;b;c) ; \overrightarrow{v} (a';b';c')

et $A(x_A; y_A; z_A)$ un point du plan (\mathcal{P}) .

M appartient au plan (\mathcal{P}) si, et seulement si, il existe un couple (t;t') de réels tels que :

$$\begin{cases} x = at + a't' + x_A \\ y = bt + b't' + y_A \\ z = ct + c't' + z_A \end{cases}$$

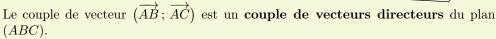
Ce système d'équations est appelé représentation paramétrique du plan (\mathcal{P}) .

Définition:

Trois points A, B et C non-alignés caractérisent un unique plan noté (ABC).

L'ensemble des points M du plan (ABC) se caractérisent par la relation :

$$\overrightarrow{AM} = \alpha . \overrightarrow{AB} + \beta . \overrightarrow{AC} \quad \text{où } \alpha, \beta \in \mathbb{R}$$



Tout couple de vecteurs $(\overrightarrow{i}; \overrightarrow{j})$ non-colinéaires et admettant un représentant dans un plan (\mathcal{P}) forme un couple de vecteurs directeurs.

Pour tout point A du plan (\mathcal{P}) , le triplet $(A; \overrightarrow{i}; \overrightarrow{j})$ forme un repère du plan (\mathcal{P}) .

Définition:

Trois vecteurs \overrightarrow{i} , \overrightarrow{j} et \overrightarrow{k} sont **coplanaires** s'ils admettent trois représentant dans un même plan

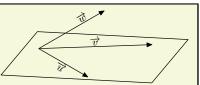
Proposition:

Soit \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs de l'espace.

 $\begin{vmatrix} \overrightarrow{v}, \overrightarrow{v} & \text{et } \overrightarrow{w} & \text{sont coplanaires} \end{vmatrix} \iff \exists (\alpha; \beta; \gamma) \neq (0; 0; 0), \quad \alpha \cdot \overrightarrow{u} + \beta \cdot \overrightarrow{v} + \gamma \cdot \overrightarrow{w} = \overrightarrow{0}$

Remarque:

Si les vecteurs \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} ne sont pas coplanaires, alors l'équation $\alpha \cdot \overrightarrow{u} + \beta \cdot \overrightarrow{v} + \gamma \cdot \overrightarrow{w} = 0$ admet pour unique solution le triplet (0;0;0)



Proposition:

Soit (\mathcal{P}) un plan admettant les vecteurs \overrightarrow{u} et \overrightarrow{v} comme vecteurs directeurs où : \overrightarrow{u} (a;b;c) ; \overrightarrow{v} (a';b';c')

et $A(x_A; y_A; z_A)$ un point du plan (\mathcal{P}) .

M appartient au plan (\mathcal{P}) si, et seulement si, il existe un couple (t;t') de réels tels que :

$$\begin{cases} x = at + a't' + x_A \\ y = bt + b't' + y_A \\ z = ct + c't' + z_A \end{cases}$$

Ce système d'équations est appelé représentation paramétrique du plan (P).