Théorème : (fondamental)

Si f est une fonction continue et positive sur l'intervalle [a;b], la fonction F définie sur [a;b] par :

$$F: x \longmapsto \int_{a}^{x} f(t) dt$$

est dérivable sur [a;b] et admet pour dérivée la fonction f.

Démonstration:

Dire que la fonction F est dérivable et admet pour dérivée la fonction f signifie que le nombre dérivée de la fonction F en x_0 vaut $f(x_0)$. Nous devons donc établir, pour tout $x_0 \in [a;b]$, l'égalité :

$$F'(x_0) = \lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0)$$

On ne montrera pas le théorème dans sa généralité (qui sera admis) mais seulemnet dans le cas particulier où la fonction est également **croissante**.

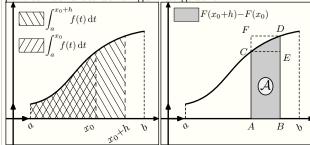
Pour établir la valeur de la limite recherchée, nous allons étudier séparemment la limite à droite et à gauche.

• Etude du nombre dérivée à droite : Montrons que :
$$\lim_{h \mapsto 0^+} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0)$$

Pour étudier ce cas, on suppose que h>0. Par définition

de la fonction
$$F$$
, on a :
$$F(x_0) = \int_a^{x_0} f(t) dt \quad ; \quad F(x_0+h) = \int_a^{x_0+h} f(t) dt$$

Par définition de l'intégrale d'une fonction positive, les deux images, $F(x_0)$ et $F(x_0+h)$, sont représentées par les parties hachurées de la figure de gauche :



Ainsi, l'aire grisée de la figure de droite, notée A, est obtenue par décomposition des surfaces :

$$F(x_0) + \mathcal{A} = F(x_0 + h)$$

$$\mathcal{A} = F(x_0 + h) - F(x_0)$$

Parmi les points de la figure de droite, on a les coordonnées suivantes :

$$C(x_0; f(x_0))$$
 ; $D(x_0+h; f(x_0+h))$

On a les aires suivantes des rectangles ABEC et ABDF:

$$\mathcal{A}_{ABEC} = h \times f(x_0)$$
 ; $\mathcal{A}_{ABDF} = h \times f(x_0 + h)$

La comparaison des aires permet d'obtenir l'encadrement :

$$h \times f(x_0) \leqslant \mathcal{A} \leqslant h \times f(x_0 + h)$$

$$h \times f(x_0) \leqslant F(x_0+h) - F(x_0) \leqslant h \times f(x_0+h)$$

h est un nombre réel positif :

$$f(x_0) \leqslant \frac{F(x_0+h) - F(x_0)}{h} \leqslant f(x_0+h)$$

La continuité de la fonction f sur [a;b] et en particulier en x_0 permet d'obtenir la limite suivante :

$$\lim_{h \to 0^+} f(x_0 + h) = f(x_0)$$

D'après l'encadrement précédent et le théorème des gendarmes, on obtient la valeur de la limite suivante : $\lim_{h\to 0^+}\frac{F(x_0+h)-F(x_0)}{h}=f(x_0)$

$$\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0)$$

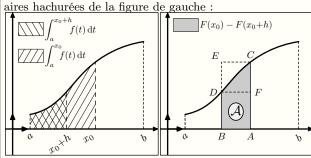
• Etude du nombre dérivée à gauche :

Montrons que
$$\lim_{h \to 0^-} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0)$$

Pour étudier ce cas, on suppose que h < 0. Par définition de la fonction F, on a :

$$F(x_0) = \int_a^{x_0} f(t) dt$$
 ; $F(x_0+h) = \int_a^{x_0+h} f(t) dt$

Par définition de l'intégrale d'une fonction positive, les deux images, $F(x_0)$ et $F(x_0+h)$, sont représentées par les



Ainsi, l'aire grisée de la figure de droite étant notée \mathcal{A} , on obtient par décomposition des surfaces, l'égalité suivante :

$$F(x_0+h) + \mathcal{A} = F(x_0)$$

$$\mathcal{A} = F(x_0) - F(x_0 + h)$$

Parmi les points de la figure de droite, on a les coordonnées suivantes :

$$C(x_0; f(x_0))$$
; $D(x_0+h; f(x_0+h))$

On a les aires suivantes des rectangles ABEC et ABDF:

$$\mathcal{A}_{ABEC} = (-h) \times f(x_0)$$
; $\mathcal{A}_{ABDF} = (-h) \times f(x_0 + h)$ (Ne pas oublier qu'une aire est positive et que le nombre réel h est négatif).

La comparaison des aires permet d'obtenir l'encadrement :

$$(-h) \times f(x_0 + h) \leqslant \mathcal{A} \leqslant (-h) \times f(x_0)$$

$$(-h)\times f(x_0+h)\leqslant F(x_0)-F(x_0+h)\leqslant h\times f(x_0)$$

-h est un nombre réel positif :

$$f(x_0+h) \leqslant \frac{F(x_0) - F(x_0+h)}{-h} \leqslant f(x_0)$$

$$f(x_0+h) \leqslant \frac{F(x_0+h) - F(x_0)}{h} \leqslant f(x_0)$$

La continuité de la fonction f sur [a;b] et en particulier en x_0 permet d'obtenir la limite suivante :

$$\lim_{h \to 0^-} f(x_0 + h) = f(x_0)$$

D'après l'encadrement précédent et le théorème des gendarmes, on obtient la valeur de la limite suivante : $\lim_{h\to 0^-} \frac{F(x_0+h)-F(x_0)}{h} = f(x_0)$

$$\lim_{h \to 0^{-}} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0)$$

Conclusion :

On vient de montrer l'égalité des deux limites à gauche et

à droite:
$$\lim_{h \to 0^{-}} \frac{F(x_0 + h) - F(x_0)}{h} = \lim_{h \to 0^{+}} \frac{F(x_0 + h) - F(x_0)}{h}$$

à droite : $\lim_{h \to 0^-} \frac{F(x_0 + h) - F(x_0)}{h} = \lim_{h \to 0^+} \frac{F(x_0 + h) - F(x_0)}{h}$ Ce qui montre l'existence de la limite $\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h}$

et cette limite a pour valeur :
$$\lim_{h\to 0} \frac{F(x_0+h) - F(x_0)}{h} = f(x_0)$$

Par définition du nombre dérivée d'une fonction, on a :

$$F'(x) = f(x_0)$$