Exercice 1

Pour tout entier naturel n non nul, on considère le nombre U_n défini par :

$$U_n = 1 + 3 + 3^2 + \dots + 3^{n-1}$$

On cherche à déterminer si ce nombre peut être divisible par l'un ou plusieurs des nombres premiers suivants :

$$2 \; ; \; 3 \; ; \; 7 \; ; \; 13$$

Partie A

- 1. A l'aide d'un logiciel adapté, calculer U_1, U_2, \ldots, U_{30} .
- 2. Déterminer les listes des restes de la division de U_n par 2; par 3; par 7 et par 13.
- 3. a. Quelles conjectures peut-on en tirer sur la divisibilité de U_n pour chacun des entiers précédents?
 - b. A quelle(s) condition(s) sur n, le nombre U_n semblet-il être divisible par 7×13 ? par $2 \times 7 \times 13$?

Partie B

- 1. Montrer que, pour tout entier naturel n non nul, U_n est divisible par 7 si, et seulement si, 7 divise $3^n - 1$.
- A l'aide de la question précédente, démontrer la conjecture émise pour 7.
- 3. Dans le cas où U_n est divisible par 7, U_n est-il divisible par 7×13 ? par $2 \times 7 \times 13$?

Exercice 1

Pour tout entier naturel n non nul, on considère le nombre U_n défini par :

$$U_n = 1 + 3 + 3^2 + \dots + 3^{n-1}$$

On cherche à déterminer si ce nombre peut être divisible par l'un ou plusieurs des nombres premiers suivants :

$$2 \; ; \; 3 \; ; \; 7 \; ; \; 13$$

Partie A

- 1. A l'aide d'un logiciel adapté, calculer U_1, U_2, \ldots, U_{30} .
- Déterminer les listes des restes de la division de U_n par 2; par 3; par 7 et par 13.
- a. Quelles conjectures peut-on en tirer sur la divisibilité de U_n pour chacun des entiers précédents?
 - b. A quelle(s) condition(s) sur n, le nombre U_n semblet-il être divisible par 7×13 ? par $2 \times 7 \times 13$?

Partie B

- 1. Montrer que, pour tout entier naturel n non nul, U_n est divisible par 7 si, et seulement si, 7 divise $3^n - 1$.
- A l'aide de la question précédente, démontrer la conjecture émise pour 7.
- 3. Dans le cas où U_n est divisible par 7, U_n est-il divisible par 7×13 ? par $2 \times 7 \times 13$?

Exercice 1

Pour tout entier naturel n non nul, on considère le nombre U_n défini par :

$$U_n = 1 + 3 + 3^2 + \dots + 3^{n-1}$$

On cherche à déterminer si ce nombre peut être divisible par l'un ou plusieurs des nombres premiers suivants :

$$2 \; ; \; 3 \; ; \; 7 \; ; \; 13$$

Partie A

- 1. A l'aide d'un logiciel adapté, calculer U_1, U_2, \ldots, U_{30} .
- 2. Déterminer les listes des restes de la division de U_n par 2; par 3; par 7 et par 13.
- 3. a. Quelles conjectures peut-on en tirer sur la divisibilité de U_n pour chacun des entiers précédents?
 - b. A quelle (s) condition (s) sur n, le nombre U_n semblet-il être divisible par 7×13 ? par $2 \times 7 \times 13$?

Partie B

- 1. Montrer que, pour tout entier naturel n non nul, U_n est divisible par 7 si, et seulement si, 7 divise $3^n - 1$.
- 2. A l'aide de la question précédente, démontrer la conjecture émise pour 7.
- 3. Dans le cas où U_n est divisible par 7, U_n est-il divisible par 7×13 ? par $2 \times 7 \times 13$?

Exercice 1

Pour tout entier naturel n non nul, on considère le nombre U_n défini par :

$$U_n = 1 + 3 + 3^2 + \dots + 3^{n-1}$$

On cherche à déterminer si ce nombre peut être divisible par l'un ou plusieurs des nombres premiers suivants :

$$2 \; ; \; 3 \; ; \; 7 \; ; \; 13$$

Partie A

- 1. A l'aide d'un logiciel adapté, calculer U_1, U_2, \ldots, U_{30} .
- Déterminer les listes des restes de la division de U_n par 2; par 3; par 7 et par 13.
- a. Quelles conjectures peut-on en tirer sur la divisibilité de U_n pour chacun des entiers précédents?
 - b. A quelle (s) condition (s) sur n, le nombre U_n semblet-il être divisible par 7×13 ? par $2 \times 7 \times 13$?

Partie B

- 1. Montrer que, pour tout entier naturel n non nul, U_n est divisible par 7 si, et seulement si, 7 divise $3^n - 1$.
- A l'aide de la question précédente, démontrer la conjecture émise pour 7.
- Dans le cas où U_n est divisible par 7, U_n est-il divisible par 7×13 ? par $2 \times 7 \times 13$?