Exercice

On considère les deux suites (u_n) et (v_n) définies sur \mathbb{N} par les relations :

•
$$u_0 = 8$$
 ; $u_{n+1} = \frac{1}{5} (u_n + 4 \cdot v_n)$

•
$$v_0 = -6$$
 ; $v_{n+1} = \frac{1}{5} (3 \cdot u_n + 2 \cdot v_n)$

- 1. A l'aide d'un logiciel tableur :
 - a. Déterminer les 20 premiers termes des deux suites (u_n) et (v_n) .
 - b. Emettre une conjecture sur la nature de ces deux suites.

On définit la suite (w_n) dont le terme de rang n est défini par la relation :

$$w_n = 3 \cdot u_n + 4 \cdot v_n$$

- c. Construire les 20 premiers termes de la suite (w_n) et émettre une conjecture quant à sa nature.
- 2. a. Etablir que la suite (w_n) est une suite constante.
 - b. Déterminer la nature des deux suites (u_n) et (v_n) et leurs ééments caractéristique.

Exercice

On considère les deux suites (u_n) et (v_n) définies sur \mathbb{N} par les relations :

•
$$u_0 = 8$$
 ; $u_{n+1} = \frac{1}{5} (u_n + 4 \cdot v_n)$

•
$$v_0 = -6$$
 ; $v_{n+1} = \frac{1}{5} (3 \cdot u_n + 2 \cdot v_n)$

- 1. A l'aide d'un logiciel tableur :
 - a. Déterminer les 20 premiers termes des deux suites (u_n) et (v_n) .
 - b. Emettre une conjecture sur la nature de ces deux suites.

On définit la suite (w_n) dont le terme de rang n est défini par la relation :

$$w_n = 3 \cdot u_n + 4 \cdot v_n$$

- c. Construire les 20 premiers termes de la suite (w_n) et émettre une conjecture quant à sa nature.
- 2. a. Etablir que la suite (w_n) est une suite constante.
 - b. Déterminer la nature des deux suites (u_n) et (v_n) et leurs ééments caractéristique.

Exercice

On considère les deux suites (u_n) et (v_n) définies sur \mathbb{N} par les relations :

•
$$u_0 = 8$$
 ; $u_{n+1} = \frac{1}{5}(u_n + 4 \cdot v_n)$

•
$$v_0 = -6$$
 ; $v_{n+1} = \frac{1}{5} (3 \cdot u_n + 2 \cdot v_n)$

- 1. A l'aide d'un logiciel tableur :
 - a. Déterminer les 20 premiers termes des deux suites (u_n) et (v_n) .
 - b. Emettre une conjecture sur la nature de ces deux suites.

On définit la suite (w_n) dont le terme de rang n est défini par la relation :

$$w_n = 3 \cdot u_n + 4 \cdot v_n$$

- c. Construire les 20 premiers termes de la suite (w_n) et émettre une conjecture quant à sa nature.
- 2. a. Etablir que la suite (w_n) est une suite constante.
 - b. Déterminer la nature des deux suites (u_n) et (v_n) et leurs ééments caractéristique.

Exercice

On considère les deux suites (u_n) et (v_n) définies sur \mathbb{N} par les relations :

•
$$u_0 = 8$$
 ; $u_{n+1} = \frac{1}{5} (u_n + 4 \cdot v_n)$

•
$$v_0 = -6$$
 ; $v_{n+1} = \frac{1}{5} (3 \cdot u_n + 2 \cdot v_n)$

- 1. A l'aide d'un logiciel tableur :
 - a. Déterminer les 20 premiers termes des deux suites (u_n) et (v_n) .
 - b. Emettre une conjecture sur la nature de ces deux suites.

On définit la suite (w_n) dont le terme de rang n est défini par la relation :

$$w_n = 3 \cdot u_n + 4 \cdot v_n$$

- c. Construire les 20 premiers termes de la suite (w_n) et émettre une conjecture quant à sa nature.
- 2. a. Etablir que la suite (w_n) est une suite constante.
 - b. Déterminer la nature des deux suites (u_n) et (v_n) et leurs ééments caractéristique.