note α la mesure de l'angle \widehat{BAC} . On raisonnement par disjonction de cas: Supposons que l'angle BAC est aigu: Notons G le projeté orthogonal du point C sur la droite (AB) et H le projeté orthogonal du point Bsur la droite (AC). \Rightarrow Les vecteurs \overrightarrow{AB} et \overrightarrow{AG} étant colinéaires et de même sens, on en déduit : $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AG$ Le triangle ACG étant rectangle en G, on a: $\cos \widehat{CAG} = \frac{AG}{AC} \implies AG = AC \times \cos \alpha$ $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AG = AB \times AC \times \cos \alpha$ \Rightarrow Les vecteurs \overrightarrow{AC} et \overrightarrow{AH} étant colinéaires et de même sens, on en déduit : $\overrightarrow{AC} \cdot \overrightarrow{AB} = AC \times AH$ Le triangle ABH étant rectangle en H, on a le rapport trigonométrique: $\cos \widehat{BAH} = \frac{AH}{AB}$ $AH = AB \times \cos \alpha$ $\overrightarrow{AC} \cdot \overrightarrow{AB} = AC \times AH = AC \times AB \times \cos \alpha$ $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AC} \cdot \overrightarrow{AB}$ On vient d'établir: Supposons que l'angle \widehat{BAC} est obtu: Notons β l'angle supplémentaire à l'angle α , le point H projeté du point B sur la droite (AC), le point Gprojeté du point C sur la droite (AB). A β

Proposition:

Pour tout vecteur u' et v' du plan:

On considère les deux vecteurs \overrightarrow{AB} et \overrightarrow{AC} non-nul et on

 \Rightarrow Les vecteurs \overrightarrow{AB} et \overrightarrow{AG} sont colinéaires de sens contraires: $\overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AG$ Le triangle ACG est rectangle en G, on a le rapport trigonométrique: $\cos \beta = \frac{AG}{AC}$ $\implies AG = AC \times \cos \beta$ $\overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AG = -AB \times AC \times \cos \beta$ \Rightarrow Les vecteurs \overrightarrow{AC} et \overrightarrow{AH} sont colinéaires de sens contraires: $\overrightarrow{AC} \cdot \overrightarrow{AH} = -AC \times AH$ Le triangle ABH est rectangle en H, on a le rapport trigonométrique: $\cos \beta = \frac{AH}{AB} \implies$ $AH = AB \times \cos \beta$ $\overrightarrow{AC} \cdot \overrightarrow{AH} = -AC \times AH = -AC \times AH \times \cos \beta$ On a: On vient d'établir: $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AC} \cdot \overrightarrow{AB}$ mais ne pose pas de difficulté.

Les cas d'un angle α nul ou plat sont à traiter à part