"La fonction exp n'est pas strictement positive sur \mathbb{R} . C'est à dire qu'il existe au moins un nombre réel a tel que $\exp(a) \leqslant 0$ " Ainsi, a est un nombre réel vérifiant $\exp(a) \leq 0$. Sachant que la fonction exp ne s'annule pas sur \mathbb{R} , on a déduit que le nombre a vérifie : $\exp(a) < 0$ On en déduit que $0 \in [\exp(a); 1]$. Puisque: • exp est continue sur \mathbb{R} puisqu'elle continue sur \mathbb{R} ; • $\exp(0) = 1$ D'après le théorème des valeurs intermédiaires, on en déduit l'existence d'un nombre b telle que : $\exp(b) = 0$ On aboutit à une contradiction car la fonction exp ne s'annule pas sur \mathbb{R} . Corollaire: La fonction exponentielle est strictement croissante sur \mathbb{R} . Preuve: La fonction exponentielle est strictement positive. Par définition, la fonction exponentielle vérifie la propriété $f'\!=\!f.$ Ainsi, la fonction exponentielle admet une dérivée (elle $m\hat{e}me)$ strictement positive, on en déduit que la fonction exponentielle est strictement croissante. Proposition: La fonction exponentielle est continue et dérivable sur \mathbb{R} et admet le tableau de vaiation suivant: x $-\infty$ 0 $+\infty$ $+\infty$ Variation 1 $\mathrm{de}\,\exp$ Preuve: La fonction exponentielle est strictement croissance sur $\mathbb{R}.$ Les limites aux bornes de l'ensemble $\mathbb R$ de définition de la fonction exponentielle sont démontrées dans le document :

La fonction exp est strictement positive sur \mathbb{R} .

Raisonnons par l'absurde pour montrer cette assertion. Pour

Preuve:

cela supposons:

r651-0