Déravibilité et continuité

A. Dérivabilité:

1. Rappel:

Définition:

Soit f une fonction définie sur un intervalle I et soit a un nombre réel appartenant à I.

On dit que la fonction f est **dérivable en** a si la limite suivante existe :

 $\lim_{\substack{h \to 0 \\ a+h \in I}} \frac{f(a+h) - f(a)}{h}$

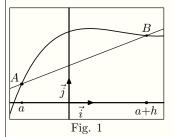
Dans ce cas, la valeur de cette limite s'appellera **nombre dérivée de la fonction** f **en** a et on le notera f'(a).

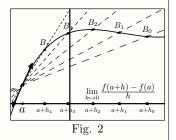
Remarque:

Soit f une fonction définie sur un intervalle I. Soient a et a+h deux nombres appartenant à I qui sont les abscisses respectives des points A et B de la courbe \mathscr{C} (Fig.1).

Le coefficient directeur de la corde (AB) se calcule par :

$$\frac{y_B - y_A}{x_B - x_A} = \frac{f(a+h) - f(a)}{(a+h) - a} = \frac{\dot{f}(a+h) - f(a)}{h}$$





La figure 2 présente la tangente au point d'abscisse a comme la position "limite" des cordes lorsque la suite de points B_n se rapproche du point A.

On **admet** que si une fonction f est dérivable en a alors:

- La courbe \mathscr{C} admet une tangente en a;
- Le coefficient directeur de cette tangente est :

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$$

Proposition:

Soit f une fonction définie sur I et dérivable en $a \in I$. La tangente à la courbe $\mathscr C$ de la fonction f au point d'abscisse a a pour équation :

$$y = f'(a) \cdot (x - a) + f(a)$$

Preuve

Soit f une fonction définie et dérivable en a. On note \mathscr{C}_f la courbe représentative de la fonction f.

Le point A(a; f(a)) appartient à \mathscr{C}_f . On dit que A est l'unique point de \mathscr{C}_f d'abscisse a.

Notons (d) la tangente à la courbe \mathscr{C}_f au point A. Son coefficient directeur vaut f'(a). Ainsi, son équation réduite s'exprime sous la forme:

$$y = f'(a) \cdot x + b$$
 où $b \in \mathbb{R}$

Les coordonnées du point A vérifie cette équation

$$y_A = f'(a) \cdot x_A + b$$
$$f(a) = f'(a) \cdot a + b$$
$$b = f(a) - f'(a) \cdot a$$

Ainsi, l'équation réduite de la droite (d) s'exprime par:

$$y = f'(a) \cdot x + b$$

$$y = f'(a) \cdot x + [f(a) - f'(a) \cdot a]$$

$$y = f'(a) \cdot (x - a) + f(a)$$

Définition:

- Une fonction est dite **dérivable sur l'intervalle** I si elle est dérivable pour tout nombre a appartenant à I.
- Soit une fonction f dérivable sur un intervalle I. Il existe une fonction associant à tout nombre x de I le nombre dérivée associé à la fonction :

$$x \longmapsto f'(x)$$

Cette fonction s'appelle la fonction dérivée de la fonction f sur I et est notée f'.

Proposition:

Le tableau ci-dessous résume l'expression des fonctions dérivées des fonctions de références :

f(x)	f'(x)	\mathcal{D}'
k	0	\mathbb{R}
x^n	$n \cdot x^{n-1}$	\mathbb{R}
$\frac{1}{x}$	$-\frac{1}{x^2}$	\mathbb{R}^*
\sqrt{x}	$\frac{1}{2\cdot\sqrt{x}}$	\mathbb{R}_+^*

Preuve:

Voir le document:

http://chingatome.fr/r468

Proposition:

Soit u et v deux fonctions définies et dérivables sur un intervalle I. Voici quelques propriétés de dérivations sur les opérations algébriques:

Expression algébrique	Expression de la fonction dérivée	Domaine de dérivation
$k \cdot u$	$k \cdot u'$	I
u+v	u' + v'	I
u-v	u'-v'	I
$k \cdot u + \ell \cdot v$	$k \cdot u' + \ell \cdot v'$	I
$u \cdot v$	$u' \cdot v + u \cdot v'$	I
$\frac{1}{v}$	$-\frac{v'}{v^2}$	$\{x \in I \mid v(x) \neq 0\}$
$\frac{u}{v}$	$\frac{u' \cdot v - u \cdot v'}{v^2}$	$\{x \in I \mid v(x) \neq 0\}$

Preuve:

Voir le document :

http://chingatome.fr/r468

B. Dérivation des fonction composées:

Proposition:

Soit u une fonction définie et dérivable sur un intervalle I:

f(x)	f'(x)	\mathcal{D}_f'
$[u(x)]^n$	$n \cdot u'(x) \cdot [u(x)]^{n-1}$	I
$\frac{1}{u(x)}$	$-\frac{u'(x)}{\big[u(x)\big]^2}$	$\big\{x{\in}I \mid u(x){\neq}0\big\}$
$\sqrt{u(x)}$	$\frac{u'(x)}{2 \cdot \sqrt{u(x)}}$	$\left\{x \in \mathbb{R} \mid u(x) > 0\right\}$
$u(a \cdot x + b)$	$a \cdot u'(a \cdot x + b)$	$\left\{x \in \mathbb{R} \middle a \cdot x + b \in I\right\}$

Remarque:

On remarque les expressions suivantes:

$$\bullet \left(\left[u(x) \right]^n \right)' = u'(x) \cdot \left(n \cdot \left[u(x) \right]^{n-1} \right)$$

•
$$\left(\frac{1}{u(x)}\right)' = u'(x) \cdot \left(-\frac{1}{\left[u(x)\right]^2}\right)$$

On observe la formule générale de dérivation de la fonction composée de la fonction u par la fonction f:

$$\left(f\big[u(x)\big]\right)' = u'(x) \times f'\big[u'(x)\big]$$

Voir: http://chingatome.fr/r585

1. Fonctions non-dérivables:

Voici quelques exemples de fonctions non-dérivables au point a:

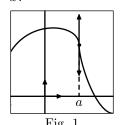
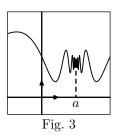


Fig. 2



• Fig. 1: la courbe \mathscr{C}_f admet une tangente verticale en a. On a:

 $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = +\infty$

- Fig. 2: la courbe \mathscr{C}_g admet deux demi-tangentes en a: $\lim_{h \to 0^-} \frac{f(a+h) f(a)}{h} \neq \lim_{h \to 0^+} \frac{f(a+h) f(a)}{h}$
- Fig. 3: la courbe \mathscr{C}_f admet n'admet aucune tangente en a: $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ n'existe pas.

C. Fonctions continues:

1. Approche de la continuité:

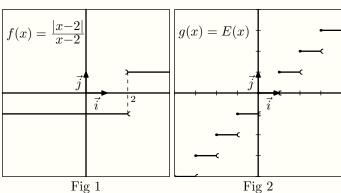
Introduction:

Soit a un nombre réel. Une fonction f est dite continue en a si:

- f est définie en a;
- La courbe représentative \mathcal{C}_f est tracé d'un seul trait autour de a.

Exemple:

Exemple de fonction non-continue en a:



- La fonction f n'est pas définie en 2: elle n'est pas continue en 2.
- La fonction g est la fonction "partie entière": elle n'est pas continue pour tout $x \in \mathbb{N}$. En particulier pour le nombre 2:

$$\lim_{x \to 2^+} f(x) = f(2) \neq \lim_{x \to 2^-} f(x)$$

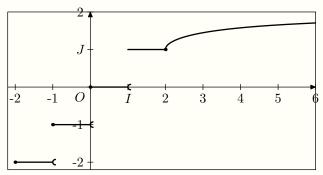
Définition

Une fonction est dite continue sur un intervalle I si elle est continue pour tout nombre a de l'intervalle I.

Exemple:

Considérons la fonction f définie sur \mathbb{R} par la relation:

$$\begin{cases} f(x) = E(x) & \text{si } x < 2\\ f(x) = 1 & \text{si } x = 2\\ f(x) = \frac{x - 2}{\sqrt{x^2 - 4}} + 1 & \text{si } x > 2 \end{cases}$$



Montrons que la fonction f est continue en 2:

• Sur l'intervalle [1;2[, la fonction E est constante est vaut 1. On en déduit la limite:

$$\lim_{\substack{x \mapsto 2^{-} \\ x \in [1;2]}} f(x) = \lim_{\substack{x \mapsto 2^{-} \\ x \in [1;2]}} E(x) = 1$$

• Sur $]2; +\infty[$, on a les transformations algébriques:

$$f(x) = \frac{x-2}{\sqrt{x^2-4}} + 1 = \frac{x-2}{\sqrt{(x+2)(x-2)}} + 1$$

$$= \frac{(\sqrt{x-2})^2}{\sqrt{x+2} \cdot \sqrt{x-2}} + 1 = \frac{\sqrt{x-2}}{\sqrt{x+2}} + 1$$

On en déduit la limite suivante :

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{\sqrt{x-2}}{\sqrt{x+2}} + 1 = \frac{0}{2} + 1 = 1$$

On en déduit que la fonction f est continue en 1:

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = 1$$

2. Propriété de la continuité:

Proposition: (admise)

- Les fonctions polynômiales, la fonction racine carrée sont continues sur leur ensemble de définition.
- La fonction inverse est continue sur \mathbb{R}_{-}^{*} et continue sur \mathbb{R}_{+}^{*}

Proposition: (admise)

La somme, le produit, le quotient de fonctions continues sont des fonctions continues sur chacun des intervalles contenus dans leur ensemble de définition.

Exemple:

• $f(x) = x^2 + \sqrt{x}$

La fonction carré et la fonction racine carré sont continues sur $[0; +\infty[$. Comme somme de fonctions continues, la fonction f est continue sur l'intervalle $[0; +\infty[$.

 $g(x) = \frac{\sqrt{x}}{x-1}.$

La fonction racines carrées et la fonction polynômiale du dénominateur sont continues sur l'intervalle $[0;+\infty[$.

La fonction g est définie sur $[0;1[\cup]1;+\infty[$. Comme quotient de fonctions continues, la fonction g est continue sur [0;1[et continue sur $]1;+\infty[$.

Proposition: (admise)

Si une fonction est dérivable sur un intervalle I alors elle est continue sur I

Remarque:

La réciproque est fausse: voir la figure 2 du B. 2.

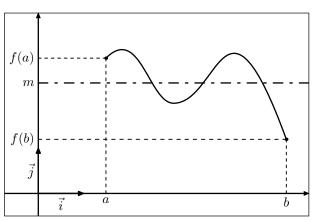
D. Théorème des valeurs intermédiaires:

1. Sur un intervalle bornée:

Théorème:

Soit f une fonction définie et continue sur [a;b].

Pour tout $m \in \mathbb{R}$ compris entre f(a) et f(b), il existe au moins un réel c appartenant à [a;b] tel que f(c) = m.



Corollaire:

Soit f une fonction définie et continue sur [a;b]. Si f(a) et f(b) sont de signes contraires, alors il existe au moins un nombre réel c appartenant à [a;b] tel que f(c)=0.

Exemple:

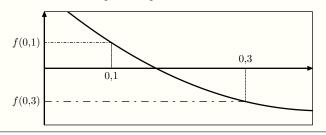
Soit f définie par: $6x^2 - 5x + \frac{2}{3}$ Montrons que f s'annule sur [0,1;0,2].

Remarquons: $f(0,1) \simeq 0.22 > 0$; $f(0,2) \simeq -0.09 < 0$

On a:

- f est continue sur [0,1;0,2]
- f(0,1) et f(0,2) sont de signes contraires

D'après le corollaire du théorème des valeurs intermédiaires, il existe un réel $c \in [0,1;0,2]$ tel que f(c) = 0



Corollaire:

Soit f une fonction définie et continue sur [a;b]. Si f est strictement monotone sur I alors, pour tout $m \in \mathbb{R}$ compris entre f(a) et f(b), il existe un unique réel c appartenant à [a;b] tel que f(c)=m

Exemple:

Soit f la fonction carré. Montrons qu'il existe un nombre appartenant à \mathbb{R}^+ ayant 3 pour carré.

Remarquons: f(1) = 1 ; f(2) = 4

On a:

- f est continue sur [1;2]
- f est strictement croissante sur [1;2]
- 3 est compris entre les images des bornes de [1;2]

D'après le corollaire du théorème des valeurs intermédiaires, il existe un unique réel $c \in [1; 2]$ tel que f(c) = 3.

2. Sur un intervalle quelconque:

Dans cette partie, a et b désignent soit un réel, soit $\pm \infty$.

Théorème:

Soit f une fonction définie sur a; b.

Si f est continue alors pour tout réel m strictement compris entre $\lim_{x\mapsto a}f(x)$ et $\lim_{x\mapsto b}f(x)$, l'équation f(x)=m admet

au moins une solution dans a; b.

Corollaire:

Soit f une fonction définie sur a; b et $k \in \mathbb{R}$.

- f est continue sur a; b
- f est strictement monotone sur a; b
- m est compris entre les limites de f aux bornes de a; b

alors il existe un réel $c \in a$; b[tel que f(c) = m.

Exemple:

Soit f définie sur $\mathbb R$ par:

$$f(x) = \frac{1}{x^3 + 2 \cdot x + 1}$$

$$f(x) = \frac{1}{x^3 + 2 \cdot x + 1}$$
Remarquons: $f(x) = f(0) = 1$ et $\lim_{x \to +\infty} f(x) = 0$

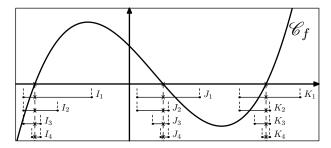
$$f'(x) = -\frac{2 \cdot x^3 + 2}{\left(x^3 + 2 \cdot x + 1\right)^2} < 0$$

On a:

- f est continue sur $[0; +\infty[$
- f est strictement décroissante sur $[0; +\infty[$
- ullet 0,1 est strictement compris entre les limites de f aux bornes de $[0; +\infty[$

D'après le corollaire du théorème des valeurs intermédiaires, il existe un unique réel α tel que $f(\alpha)\!=\!0,\!1$

E. Dichotomie:



Pour en savoir plus:

http://chingatome.fr/r212