Proposition:

On considère le plan muni d'un repère orthonormé (O; I; J) et deux points A et B de coordonnées respectives $(x_A; y_A)$ et $(x_B; y_B)$.

La distance AB est donnée par la formule:

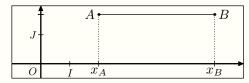
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Dans le plan muni d'un repère orthonormé, on considère les deux points $A(x_A; y_A)$ et $B(x_B; y_B)$ distincts.

Effectuons une disjonction de cas sur les coordonnées des points A et B:

• Supposons $y_A = y_B$

Puisque les points A et B sont distincts alors $x_A \neq x_B$. On peut représenter cette situation par la représentation ci-dessous:



En considérant les points $M(x_A; 0)$ et $N(x_B; 0)$, on remarque que le quadrilatère ABNM est un rectangle.

- \Rightarrow Si $x_A < x_B$ alors $AB = x_B x_A$.
- \Rightarrow Si $x_A > x_B$ alors $AB = x_A x_B$.

Le carré de deux nombres et de leurs opposés étant égaux, on en d'eduit: $(x_B - x_A)^2 = (x_A - x_B)^2$

Quelque soit le cas ci-dessous, on en déduit :

$$AB^2 = (x_B - x_A)^2$$

Or sachant que $y_A = y_B$, on en déduit :

$$y_A = y_B$$

$$0 = y_B - y_A$$

$$0 = \left(y_B - y_A\right)^2$$

$$AB^2 = (x_B - x_A)^2 + (y_B - y_A)^2$$

$$\sqrt{AB^2} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

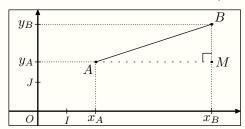
La distance étant strictement positive:

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

• Supposons $y_A = y_B$. Une démonstration analogue à la démonstration permet de montrer que :

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Sinon, la configuration des points est représentée cidessous où M est le point de coordonnées $(x_B; y_A)$



D'après les points démontrés précédemment, on a :

$$AM^2 = (x_B - x_A)^2$$
; $MB^2 = (y_B - y_A)^2$

Dans le triangle ABM rectangle en M et d'après le théorème de Pythagore, on a l'égalité:

$$AB^2 = AM^2 + MB^2$$

$$AB^2 = (x_B - x_A)^2 + (y_B - y_A)^2$$

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Proposition:

On considère le plan muni d'un repère orthonormé (O; I; J) et deux points A et B de coordonnées respectives $(x_A; y_A)$ et $(x_B; y_B)$.

La distance AB est donnée par la formule:

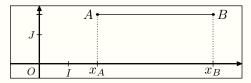
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Dans le plan muni d'un repère orthonormé, on considère les deux points $A(x_A; y_A)$ et $B(x_B; y_B)$ distincts.

Effectuons une disjonction de cas sur les coordonnées des points A et B:

• Supposons $y_A = y_B$

Puisque les points A et B sont distincts alors $x_A \neq x_B$. On peut représenter cette situation par la représentation ci-dessous:



En considérant les points $M(x_A; 0)$ et $N(x_B; 0)$, on remarque que le quadrilatère ABNM est un rectangle.

- \Rightarrow Si $x_A < x_B$ alors $AB = x_B x_A$.
- \Rightarrow Si $x_A > x_B$ alors $AB = x_A x_B$.

Le carré de deux nombres et de leurs opposés étant égaux, on en d'eduit : $(x_B - x_A)^2 = (x_A - x_B)^2$

Quelque soit le cas ci-dessous, on en déduit :

$$AB^2 = (x_B - x_A)^2$$

Or sachant que $y_A = y_B$, on en déduit :

$$y_A = y_B$$

$$0 = y_B - y_A$$

$$0 = (y_B - y_A)^2$$

$$AB^2 = (x_B - x_A)^2 + (y_B - y_A)^2$$

$$\sqrt{AB^2} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

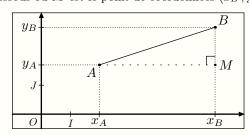
La distance étant strictement positive:

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

• Supposons $y_A = y_B$. Une démonstration analogue à la démonstration permet de montrer que:

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Sinon, la configuration des points est représentée cidessous où M est le point de coordonnées $(x_B; y_A)$



D'après les points démontrés précédemment, on a : $AM^2 = \left(x_B - x_A\right)^2$; $MB^2 = \left(y_B - y_A\right)^2$

$$AM^2 = (x_B - x_A)^2$$
; $MB^2 = (y_B - y_A)^2$

Dans le triangle ABM rectangle en M et d'après le théorème de Pythagore, on a l'égalité:

$$AB^2 = AM^2 + MB^2$$

$$AB^2 = (x_B - x_A)^2 + (y_B - y_A)^2$$

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$