Proposition: Dans le plan, on considère deux droitse (d) et (d') admettant respectivement les vecteurs \overrightarrow{n} et $\overrightarrow{n'}$ pour vecteurs normaux. ullet Les droites (d) et (d') sont parallèles si, et seulement si, les vecteurs \overrightarrow{n} et $\overrightarrow{n'}$ sont colinéaires. • Les droites (d) et (d') sont perpendiculaires si, et seulement si, les vecteurs \overrightarrow{n} et $\overrightarrow{n'}$ sont orthogonaux. Notons \overrightarrow{u} et $\overrightarrow{u'}$ des vecteurs directeurs respectivement des droites (d) et (d'). $(\overrightarrow{u};\overrightarrow{n})$ et $(\overrightarrow{u'};\overrightarrow{n'})$ sont deux couples de vecteurs orthogonaux entre eux. Supposons que les droites (d) et (d') sont parallèles. Les vecteurs \overrightarrow{u} et $\overrightarrow{u'}$ sont colinaires: le vecteur \overrightarrow{u} est aussi un vecteur directeur de la droite (d'). Les vecteurs \overrightarrow{n} et $\overrightarrow{n'}$ sont orthogonaux au même vecteur \overrightarrow{u} : on en déduit que les vecteurs \overrightarrow{n} et $\overrightarrow{n'}$ sont colinéaires. \Rightarrow Supposonş les vecteurs \overrightarrow{n} et $\overrightarrow{n'}$ sont colinéaires. Le vecteur \overrightarrow{u} étant orthogonal au vecteur \overrightarrow{n} et les vecteurs \overrightarrow{n} et $\overrightarrow{n'}$ étant colinéaires, on en déduit que le vecteur \overrightarrow{u} est orthogonal au vecteur $\overrightarrow{n'}$: le vecteur \vec{u} est aussi un vecteur directeur de la droite (d'). Les droites (d) et (d') admettant le même vecteur \overrightarrow{u} pour vecteur directeur. On en déduit que les droites (d) et (d') sont parallèles entre elles. \Rightarrow Supposons les droites (d) et (d') perpendiculaires entre elles. On en déduit que les vecteurs \overrightarrow{u} et $\overrightarrow{u'}$ sont orthogonaux entre eux. Les vecteurs $\overrightarrow{u'}$ et $\overrightarrow{u'}$ sont orthogonaux entre eux et les vecteurs $\overrightarrow{u'}$ et \overrightarrow{u} sont orthogonaux entre eux. On en déduit que les vecteurs $\overrightarrow{n'}$ et \overrightarrow{u} sont colinéaires entre eux.Le vecteur \overrightarrow{n} est orthogonal au vecteur \overrightarrow{u} et les vecteurs $\overrightarrow{n'}$ et \overrightarrow{u} sont orthogonaux entre eux: on en déduit que le vecteur \overrightarrow{n} est orthogonal au vecteur Supposons que les vecteurs \overrightarrow{n} et $\overrightarrow{n'}$ sont orthogonaux entre eux. Les vecteurs \overrightarrow{u} et $\overrightarrow{n'}$ étant orthogonaux entre eux, on en déduit que les vecteurs \vec{u} et $\overline{n'}$ sont orthogonaux entre eux. Les vecteurs $\overrightarrow{u'}$ et $\overrightarrow{n'}$ sont orthogonaux entre eux et les vecteurs \overrightarrow{u} et $\overrightarrow{n'}$ sont colinéaires entre eux. On en déduit que les vecteurs \overrightarrow{u} et u' sont orthogonaux entre eux. Les droites (d) et (d') sont perpendiculaires entre elles.