Définition:

On considère n évènements A_1, A_2, \ldots, A_n évènement d'une expérience aléatoire.

On dit que ces évènements forment une partition de Ω si ils vérifient les deux propriétés suivantes :

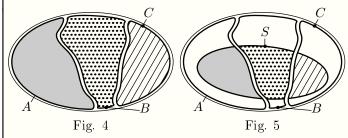
- Les évènements A_1, \ldots, A_2 sont disjoints entre eux.
- L'union de ces évènements est l'univers Ω .

Remarque:

• Pour tout évènement A, les deux évènements A et \overline{A} forment une partition de l'univers car :

$$A \cap \overline{A} = \varnothing$$
 ; $A \cup \overline{A} = \Omega$

 \bullet Considérons les 3 évènements $A,\ B$ et C représentés ci-dessous :



Ces trois évènements forment une partition de Ω car ils vérifient :

⇒ Ils sont disjoints deux à deux :

$$A \cap B = \emptyset$$
 ; $A \cap C = \emptyset$; $B \cap C = \emptyset$

ightharpoonup Leur union est l'univers: $A \cup B \cup C = \Omega$

Proposition: (Formule des probabilités totales)

Soit A, B, C trois évènements formant une partition de l'univers. On considère S un autre évènement:

$$\mathcal{P}(S) = \mathcal{P}(S \cap A) + \mathcal{P}(S \cap B) + \mathcal{P}(S \cap C)$$

Preuve: (admise dans le cas général.)

On remarquera que l'exemple du début de paragraphe justifie qu'avec la partition formée par les évènements P et \overline{P} , on a:

$$\mathcal{P}(P) = \mathcal{P}(G \cap P) + \mathcal{P}(G \cap \overline{P})$$