On considère les suites (a_n) et (b_n) définies par $a_0 = 9$ et, pour tout entier $n \ge 0$:

$$b_n = \frac{25}{a_n^2} \quad ; \quad a_{n+1} = \frac{2 \cdot a_n + b_n}{3}$$

On se propose d'étudier la monotonie et la limite de chacune de ces deux suites.

Partie A

- 1. Sur un tableur, créer trois colonnes donnant les valeurs de n, de a_n et de b_n , pour n entier variant de 0 à 20.
- 2. En observant les résultats obtenus sur le tableur, conjecture, pour chacune des suites (a_n) et (b_n) , la monotonie et une valeur approchée de la limite à 10^{-6} près.
- 3. On considère la suite (c_n) définie, pour tout entier $n \ge 0$, par $c_n = a_n^3$. Créer une nouvelle colonne du tableur pour calculer les termes c_n , pour n variant de 0 à 20. Emettre alors une conjecture sur la valeur exacte de la limite de la suite (a_n) .
- 4. Conjecturer de même la valeur exacte de la limite de la suite (b_n) .

Partie B

1. On admet que, pour tout entier $n \ge 0$: $b_n^3 \le 25 \le a_n^3$.

Après avoir vérifié que, pour tout entier $n \geqslant 0$, on a :

$$a_{n+1} - a_n = \frac{b_n - a_n}{3},$$

démontrer les résultats conjecturés à la question A.2. sur la monotonie des suites (a_n) et (b_n) .

- 2. Citer les théorèmes qui permettent de conclure que les suites (a_n) et (b_n) sont convergentes.
- 3. On désigne par ℓ et ℓ' les limites respectives des suites (a_n) et (b_n) . En utilisant les relations qui définissent ces deux suites, démontrer les résultats conjecturés aux questions $\mathbf{A}.3$. et $\mathbf{A}.4$. sur les valeurs exactes des réels ℓ et ℓ' .

On considère les suites (a_n) et (b_n) définies par $a_0 = 9$ et, pour tout entier $n \ge 0$:

$$b_n = \frac{25}{a_n^2} \quad ; \quad a_{n+1} = \frac{2 \cdot a_n + b_n}{3}$$

On se propose d'étudier la monotonie et la limite de chacune de ces deux suites.

Partie A

- 1. Sur un tableur, créer trois colonnes donnant les valeurs de n, de a_n et de b_n , pour n entier variant de 0 à 20.
- 2. En observant les résultats obtenus sur le tableur, conjecture, pour chacune des suites (a_n) et (b_n) , la monotonie et une valeur approchée de la limite à 10^{-6} près.
- 3. On considère la suite (c_n) définie, pour tout entier $n \ge 0$, par $c_n = a_n^3$. Créer une nouvelle colonne du tableur pour calculer les termes c_n , pour n variant de 0 à 20. Emettre alors une conjecture sur la valeur exacte de la limite de la suite (a_n) .
- 4. Conjecturer de même la valeur exacte de la limite de la suite (b_n) .

Partie B

1. On admet que, pour tout entier $n \ge 0$: $b_n^3 \le 25 \le a_n^3$.

Après avoir vérifié que, pour tout entier $n \ge 0$, on a :

$$a_{n+1} - a_n = \frac{b_n - a_n}{3},$$

démontrer les résultats conjecturés à la question A.2. sur la monotonie des suites (a_n) et (b_n) .

- 2. Citer les théorèmes qui permettent de conclure que les suites (a_n) et (b_n) sont convergentes.
- 3. On désigne par ℓ et ℓ' les limites respectives des suites (a_n) et (b_n) . En utilisant les relations qui définissent ces deux suites, démontrer les résultats conjecturés aux questions $\mathbf{A}.3$. et $\mathbf{A}.4$. sur les valeurs exactes des réels ℓ et ℓ' .

On considère les suites (a_n) et (b_n) définies par $a_0 = 9$ et, pour tout entier $n \ge 0$:

$$b_n = \frac{25}{a_n^2} \quad ; \quad a_{n+1} = \frac{2 \cdot a_n + b_n}{3}$$

On se propose d'étudier la monotonie et la limite de chacune de ces deux suites.

Partie A

- 1. Sur un tableur, créer trois colonnes donnant les valeurs de n, de a_n et de b_n , pour n entier variant de 0 à 20.
- 2. En observant les résultats obtenus sur le tableur, conjecture, pour chacune des suites (a_n) et (b_n) , la monotonie et une valeur approchée de la limite à 10^{-6} près.
- 3. On considère la suite (c_n) définie, pour tout entier $n \ge 0$, par $c_n = a_n^3$. Créer une nouvelle colonne du tableur pour calculer les termes c_n , pour n variant de 0 à 20. Emettre alors une conjecture sur la valeur exacte de la limite de la suite (a_n) .
- 4. Conjecturer de même la valeur exacte de la limite de la suite (b_n) .

Partie B

1. On admet que, pour tout entier $n \ge 0$: $b_n^3 \le 25 \le a_n^3$.

Après avoir vérifié que, pour tout entier $n \ge 0$, on a :

$$a_{n+1} - a_n = \frac{b_n - a_n}{3},$$

démontrer les résultats conjecturés à la question A.2. sur la monotonie des suites (a_n) et (b_n) .

- 2. Citer les théorèmes qui permettent de conclure que les suites (a_n) et (b_n) sont convergentes.
- 3. On désigne par ℓ et ℓ' les limites respectives des suites (a_n) et (b_n) . En utilisant les relations qui définissent ces deux suites, démontrer les résultats conjecturés aux questions $\mathbf{A}.3$. et $\mathbf{A}.4$. sur les valeurs exactes des réels ℓ et ℓ' .