Terminale Option Complémentaire / Algorithmes

1. Structure répétitive

E.1 On considère la suite (u_n) définie pour tout entier naturel:

$$u_0 = 115$$
 ; $u_{n+1} = 0.4 \cdot u_n + 120$

On considère les trois parties d'algorithmes ci-dessous présentant chacune une fonction terme() prenant un entier n supérieur ou égal à 1 pour argument:

Expliquer pourquoi les fonctions terme() des deux premiers algorithmes, appelées avec l'entier n, ne renvoient pas le terme de la suite (u_n) de rang n.

E.2 On considère la suite (u_n) définie pour tout entier naturel:

$$u_0 = 50000$$
 ; $u_{n+1} = 0.95 \cdot u_n + 3000$ pour tout $n \in \mathbb{N}$

On considère les trois parties d'algorithmes présentant chacune une fonction ${\tt f}$:

$$\label{eq:fonction terme1} \begin{split} &\text{Fonction terme1(A)} \\ &n \leftarrow 0 \\ &\text{U} \leftarrow 50\,000 \\ &\text{Tant que } \text{U} < \text{A} \\ &n \leftarrow \text{n+1} \\ &\text{U} \leftarrow 0;95 \cdot \text{U} + 3\,000 \\ &\text{Fin Tant que} \\ &\text{Renvoyer n} \end{split}$$

Fonction terme2(n) $\begin{array}{l} \text{U} \leftarrow 50\,000 \\ \text{Pour i allant de 1 à n} \\ \text{U} \leftarrow 0;95\text{\cdot}U + 3\,000 \\ \text{Fin Tant que} \\ \text{Renvoyer U} \end{array}$

$$\label{eq:fonction terme3(n)} \begin{split} \textbf{U} &\leftarrow 50\,000 \\ \textbf{Pour i allant de 0 à n} \\ \textbf{U} &\leftarrow 0;95 \cdot \textbf{U} + 3\,000 \\ \textbf{Fin Tant que} \\ \textbf{Renvoyer U} \end{split}$$

Parmi toutes les fonctions ci-dessus, laquelle permet, par une exécution pas à pas et en observant les valeurs successives prises par la variable U, d'obtenir toutes les valeurs des termes de la suite (u_n) pour les rangs allant de 0 à n.

E.3 On considère la suite (u_n) définie pour tout entier naturel:

 $u_0 = 5$; $u_{n+1} = \frac{1}{2} \cdot u_n + 1$ pour tout $n \in \mathbb{N}$

1 On souhaite écrire une fonction dans un algorithme prenant pour argument un entier naturel n non nul et qui renvoie la valeur du terme de rang n de la suite (u_n)

Parmi les trois fonctions suivantes, une seule convient. Indiquer lequel et justifier pourquoi les deux autres ne peuvent donner le résultat attendu.

Algorithme 1

Fonction suite(n) $U \leftarrow 5$ Pour i de 0 à n $U \leftarrow \frac{1}{2} \times U + 1$ Fin Pour

Renvoyer U

Algorithme 3

Fonction suite(n) $U \leftarrow 5$ Pour i de 0 à n $U \leftarrow \frac{1}{2} \times U + 1$ Renvoyer U

Fin Pour

2 En appelant la fonction f avec l'argument 9, la variable U se voit affecter successivement les valeurs suivantes:

5 3,5 2,75 2,375 2,185 2,0938 2,0469 2,0234 2,0117 2,0059

Quelle conjecture peut-on émettre sur le sens de variation de cette suite?

2. Structure répétitive: étude de la condition d'arrêt

E.4 On étudie l'évolution de la population d'une ville, depuis le 1^{er} janvier 2008.

On considère la population de cette ville à partir du 1 er janvier 2008 par la fonction f définie sur $\left[0\,;+\infty\right[$ par :

$$f(x) = \frac{3}{1 + 2e^{-0.05x}}$$

où x désigne le nombre d'années écoulées depuis le 1^{er} janvier 2008 et f(x) le nombre d'habitants en centaines de milliers.

On admet que f est croissante sur $[0; +\infty[$

On considère l'algorithme suivant :

$$X \leftarrow 0$$
Tant que $f(X) \leqslant 2$
 $X \leftarrow X+1$
Fin Tant que

Si on exécute cet algorithme alors en fin d'exécution la variable X aura pour valeur 28. Interpréter ce résultat dans le contexte de ce problème.

3. Structure répétitive: étude du seuil d'une suite

E.5 On considère la suite (a_n) définie par : $a_0 = 2500$; $a_{n+1} = 0.8 \cdot a_n + 400$

1 On admet que le terme général de la suite (a_n) admet pour expression:

$$a_n = 500 \times 0.8^n + 2000$$

En déduire la limite de la suite (a_n) .

2 On propose l'algorithme suivant:

$$\begin{array}{c} \mathbb{N} \leftarrow \mathbb{0} \\ \mathbb{A} \leftarrow 2500 \\ \text{Tant que } \mathbb{A}-2000 > 50 \\ \mathbb{A} \leftarrow \mathbb{A} \times \mathbb{0}; 8 + 400 \\ \mathbb{N} \leftarrow \mathbb{N} + 1 \\ \text{Fin Tant que} \end{array}$$

- a Expliquer ce que représente la valeur de la variable N à la fin de l'exécution de cet algorithme.
- (b) À l'aide de la calculatrice, déterminer la valeur de la variable N à la fin de l'exécution de cet algorithme et interpréter le résultat.

E.6 On considère la suite (u_n) est définie par $u_0 = 5700$ et pour tout entier naturel n par : $u_{n+1} = 1,015 \cdot u_n - 300$

On considère l'algorithme suivant:

$$\begin{array}{c} u \leftarrow 5700 \\ n \leftarrow 0 \\ \\ \text{Tant que } u > 4500 \\ \quad u \leftarrow \quad 1;015 \times \quad u - 300 \\ \quad n \leftarrow \quad n + 1 \\ \\ \text{Fin Tant que} \end{array}$$

1 Recopier et compléter le tableau ci-dessous en ajoutant autant de colonnes que nécessaire entre la deuxième et la dernière colonne.

Valeur de u	5700		
Valeur de n	0		
<i>u</i> >4500 (vrai/faux)	vrai	vrai	faux

 $\begin{tabular}{ll} \hline \begin{tabular}{ll} \bf 2 \\ \hline \begin{tabular}{ll} \bf A \\ \hline \begin$

Interpréter cette valeur dans le contexte de l'exercice.

E.7 On considère l'algorithme suivant:

$$\begin{array}{l} \textbf{U} \leftarrow \textbf{4} \\ \textbf{N} \leftarrow \textbf{0} \\ \textbf{Tant que} \quad \textbf{U} < \textbf{40} \end{array}$$

```
U \leftarrow 0;92\times U+8 N \leftarrow N+1 Fin Tant que
```

1 Recopier le tableau suivant et le compléter en ajoutant autant de colonnes que nécessaire.

Les valeurs de U seront arrondies au dixième.

Valeur de U	4		• • •
Valeur de N	0	• • •	• • •
Condition $U < 40$	vraie		

2 Donner la valeur de la variable N à la fin de l'exécution de cet algorithme.

E.8 Maya possède $20 \in$ dans sa tirelire au $1^{\rm er}$ juin 2018. À partir de cette date, chaque mois, elle dépense un quart du contenu de sa tirelire puis y place $20 \in$ supplémentaires. Pour tout entier naturel n, on note u_n la somme d'argent contenue dans la tirelire de Maya à la fin du n-ième mois. On a: $u_0 = 20$.

On admet que pour tout entier naturel n: $u_{n+1} = 0.75 \cdot u_n + 20$

On considère l'algorithme suivant :

```
\begin{array}{c} U \leftarrow 20 \\ \text{N} \leftarrow 0 \\ \text{Tant que} \quad \text{U} < 70 \\ \quad U \leftarrow \quad 0; 75 \times \text{U} + 20 \\ \quad \text{N} \leftarrow \quad \text{N} + 1 \\ \text{Fin Tant que} \\ \text{Afficher N} \end{array}
```

1 Recopier et compléter le tableau ci-dessous qui retrace les différentes étapes de l'exécution de l'algorithme. On ajoutera autant de colonnes que nécessaire à la place de celle laissée en pointillés. Arrondir les résultats au centième.

Valeur de U	20		
Valeur de N	0		
$\begin{array}{ c c }\hline \text{Condition} \\ U < 70 \\\hline \end{array}$	vrai	vrai	faux

2 Quelle valeur est affichée à la fin de l'exécution de cet algorithme?

Interpréter cette valeur dans le contexte de l'exercice.

4. Structure répétitive: trouver la condition d'arrêt

E.9 On considère la suite (u_n) définie par: $u_0 = 20$; $u_{n+1} = 0.92 \cdot u_n + 3$

1 On admet que le terme général de la suite (u_n) admet pour expression:

$$u_n = -17,5 \times 0,92^n + 37,5$$

En déduire la limite de la suite (u_n) .

2 a Recopier et compléter l'algorithme suivant afin qu'à la fin de son exécution la variable N représente le rang à partir duquel les termes de la suite auront une valeur supérieure ou égale à 25.

$$\begin{array}{c} \textbf{U} \leftarrow 20 \\ \textbf{N} \leftarrow 0 \\ \textbf{Tant que } \dots \\ \textbf{U} \leftarrow \textbf{0}; 92 \times \textbf{U} + 3 \\ \textbf{N} \leftarrow \textbf{N} + 1 \\ \textbf{Fin Tant que} \end{array}$$

b à l'aide de la calculatrice, déterminer le rang à partir duquel les termes de la suite (u_n) seront pour la première fois supérieur ou égal à 25.

E.10

1 Déterminer par le calcul la plus petite valeur de l'entier naturel n telle que:

$$250 + 1250 \times 0,8^n < 500$$

2 On considère la suite (u_n) définie par:

$$u_0 = 1500$$
 ; $u_{n+1} = 0.8 \cdot u_n + 50$ pour tout $n \in \mathbb{N}$

Compléter l'algorithme ci-dessous afin qu'à la fin de son exécution la variable u a pour valeur la solution obtenue à la question précédente:

$$\begin{array}{c} u \;\leftarrow\; 1500 \\ n \;\leftarrow\; 0 \\ \\ \text{Tant que} \;\ldots\ldots \;\; \text{faire} \\ \quad u \;\leftarrow\; \ldots\ldots \\ \quad n \;\leftarrow\; \ldots\ldots \\ \\ \text{Fin Tant que} \end{array}$$

E.11 On considère la suite (u_n) définie par $u_0 = 65$ et pour tout entier naturel n: $u_{n+1} = 0.8 \cdot u_n + 18$

On admet que: $u_n = 90 - 25 \times 0.8^n$

On considère l'algorithme ci-dessous:

- 1 Recopier et compléter la ligne 3 de cet algorithme afin qu'il détermine le plus petit entier naturel n tel que : $u_n \ge 85$.
- 2 Quelle est la valeur de la variable n à la fin de l'exécution

de l'algorithme?

3 Retrouver par le calcul le résultat de la question précédente en résolvant l'inéquation $u_n \ge 85$

E.12 Une société propose des contrats annuels d'entretien de photocopieurs. Le directeur de cette société remarque que, chaque année, 14 % des contrats supplémentaires sont souscrits et 7 sont résiliés.

En 2017, l'entreprise dénombrait 120 contrats souscrits.

On modélise la situation par une suite (u_n) où u_n est le nombre de contrats souscrits l'année 2017+n.

Ainsi, on a: $u_0 = 120$

- 1 Justifier que, pour tout entier naturel n, on a: $u_{n+1} = 1.14 \cdot u_n - 7$
- 2 Compte tenu de ses capacités structurelles actuelles, l'entreprise ne peut prendre en charge que 190 contrats. Au-delà, l'entreprise devra embaucher davantage de personnel.

On cherche donc à savoir en quelle année l'entreprise devra embaucher.

Pour cela, on utilise l'algorithme suivant:

```
\begin{array}{c} n \leftarrow 0 \\ u \leftarrow 120 \\ \text{Tant que } \dots \\ n \leftarrow n+1 \\ \dots \\ \text{Fin Tant que} \\ \text{Affiche } 2017+n \end{array}
```

- a Recopier et compléter l'algorithme ci-dessus.
- (b) Quelle est l'année affichée en sortie d'algorithme? Interpréter cette valeur dans le contexte de l'exercice.